BDM's Complete
Manual Series &

Python

Coding & Programming

The essential step-by-step manual to improving
your Python coding skills

www.bdmpublications.com 100% INDEPENDENT

Discover Windows 11. St

Black Dog Media

Learn New Features.
Master Your Desktop.

NEW

PRINT

EDITION

Over 250 Pages of
Expert Tutorials,
Guides & Tips!

FEATURED INSIDE:

Navigating the Start Menu
Connecting to the Internet

How to personalise Windows 11
Web browsing with Edge

Using OneDrive Cloud Storage
Video chatting with Skype
Email, Social Media & Messaging
Improving Windows 11 security
Wi-fi and Personal wi-fi hotspots
Speeding up your computer
Troubleshooting & User Advice
and much more...

Improve your
knowledge base,
gain new skills and
build confidence

Expert tutorials on
protecting your
personal data from
hackers and viruses

Get to grips with
all the essential
core features, apps
and functionality

Click the link to BUY Now from @IMAZO0N
S
https://amzn.to/3EZFHKC

Available in all good bookshops

y , BDM's Complete
Y Manual Series @

Python

Coding & Programming

Unlock your imagination with Python...

There are few coding languages that have enjoyed the success of
Python. Thanks to Python’s unique development, everyone can learn
the code that is: helping to drive such technological projects as the
Large Hadron Collider, collating the petabytes of data that made up the
. first image of a Black Hole and creating the next generation of Artificial
Intelligence. It doesn’t take long to get to grips with Python, but you
need to start small. This guide will help you form the foundation of your
Python coding future, from installing the language on to your computer,
through to forming user interaction and complex variables. There’s so
much you can do with Python and within these pages you'll find every-
thing you need to know to become a Python programmer, ready for the
next level of advanced coding.

Whether you’re looking to learn Python for future career prospects,
or just have some fun and discover something new, our step-by-step
sl tutorials and guides will give you that much-needed foothold to help -
—— amgOnffagsC you on your way.

So let’s dive in and start coding with Python.

-
-
-
-
o=
-

e (1) sua&dw HGg >N & B <
y WHMa:-= =%eq |'06'5 € 1
4 Vil &€ 0 s i u X } - o
INTE< 'L $8E v o o ¢t Y O

Z.n @ 9L A E @ wran S Ko~

O KK K®eK=S k'b K ¢ ¥ o

i 9] 20 R 93 o []

. 8 Being a Programmer 16 Why Python?
10 ABrief History of Coding 18 Python onthe Pi
3 12 What can You Do with Python? 20 Using Virtual Machines
: 14 Pythonin Numbers 22 Creating a Coding Platform

Hello World

26
28
30
32
34
36
38
40

42

L

-

alft, E Working with Data

Equipment You Will Need

Getting to Know Python

How to Set Up Python in Windows
How to Set Up Python in Linux
Starting Python for the First Time
Your First Code

Saving and Executing Your Code

Executing Code from the
Command Line

Numbers and Expressions

Using Comments

Working with Variables

User Input

Creating Functions

Conditions and Loops

Python Modules

Python Errors

Combining What You Know So Far

Python in Focus: Stitching
Black Holes

;5*55 : ir g ; 64 Lists 76 Opening Files
‘ E] &f i;\j. ; o B 77 7
e, wEes i;ﬁ;év’ T H 66 Tuples 78 Writing to Files
. ;A?éig'gg’m": o e 68 Dictionaries 80 Exceptions
PR LR 4! s
i .“’ §§ W :z' HE, ¥ 70 Splitting and Joining Strings 82 Python Graphics
2 % B Wt M“ P! 72 Formatting Strings 84 Combining What You Know So Far
: i ! d {0 74 Date and Time 86 Python in Focus: Gaming
L B - o
S 3) d
~ N . K 2 . V5 /0 % S f 9 s m
www.bdfhptylications)om] F ¢ t WA L (0] : 20 i
1 B 5 g A 0
] 2 dn & |)|
A — [0 P -, o 0/ T S

\

€

1%

Fa
&P
-9 R
= > 2 T
AT
=2 X X ¢

o e [

21 =2 A S

X MeXKiiw.. cogme
M @ 3 M &8

XZX
[18 A

|y —¢.[5] Br—gh o

,
z
syl

Master Python

with the help of our
fantastic Code Portal,
featuring code for
games, tools and more.

Using Modules mRraiy SN
90 Calendar Module Pygame Module = oSS el S
92 OS Module Basic Animation

94 Using the Math Module Create Your Own Modules
96 Random Module Python in Focus:

98 Tkinter Module Artificial Intelligence

‘‘‘‘‘

Code Repository

? g 112 Python File Manager 124 Vertically Scrolling Text
by “%’{:é "I 114 Number Guessing Game 126 Python Digital Clock
© "1 116 Random Number Generator 128 Playing Music with the Winsound
. 117 Random Password Generator Module
. 118 Textto Binary Convertor 130 Text Adventure Script
120 Basic GUI File Browser 132 Python Scrolling Ticker Script
! 122 Mouse Controlled Turtle 133 Simple Python Calculator
123 Python Alarm Clock 134 Hangman Game Script

Understanding Linux

138 Whatis Linux? 150 Useful System and
Disk Commands

152 Using the Man Pages

154 Editing Text Files

156 Linux Tips and Tricks
i 158 A-Z of Linux Commands
Renaming Files 160 Glossary of Python Terms

140 Using the Filesystem

142 Listing and Moving Files

144 Creating and Deleting Files
146 Create and Remove Directories

&g / 2l $
|:| \A,/ww.bdmﬂlbl'mtiozs.c@ Gy
AB O}gl @

o~

< []dq

> @) X~~a
£ Oed
—~— 30

1>-=1
I =~~d
X
X
I

ge

Gettin J % ‘
S ta rte d il

turn coptextyagtive object is not Nos
sirror’mod = o fier_ob.modif |

set mirror object + I

> M v (R odk
g hr_(wje(:t ’ir'

www.bdmpublications.com

Contmasnss €

Python is a high-level, general-purpose
programming language that was
developed by Guido van Rossum in the
late eighties and is based upon a number
of other languages, while being the
successor to the popular ABC language.

It has been devised to work on a human
level, soit's readable and understandable
without needing to delve into obscure
volumes of machine code, hexadecimal
characters, or even ones and zeros. It's
clear, logical, comprehensive, powerful
and functional, yet also easy to follow
and learn.

You will find Python at the heart of some
of the most interesting and cutting-edge
technologies in the world. It's the code
that binds supercomputer algorithms
together; it's used in the space industry,
and in science and engineering. Al, and
the likes of Alexa and Siri, Cortana and
the Google Assistant all utilise Python for
their powerful voice recognition
technology. It's simply an amazing,
versatile and incredible language to learn.

So let’s get started and explore what you
need to become a Python programmer.

Being a Programmer

A Brief History of Coding
What can You Do with Python?
Python in Numbers

Why Python?

Python on the Pi

Using Virtual Machines
Creating a Coding Platform

www.bdmpublications.com

E Getting Started>

Being a Programmer

Programmer, developer, coder, they're all titles For the same occupation, someone who
creates code. What they're creating the code for can be anything from a video game

to a critical element on-board the International Space Station. How do you become a
programmer though?

(Being a Programmer m

MORE THAN CODE

For those of you old enough to remember the ‘80s, the golden era of home
computing, the world of computing was a very different scene to how it is
today. 8-bit computers that you could purchase as a whole, as opposed to
being in kit form and you having to solder the parts together, were the stuff
of dreams; and getting your hands on one was sheer bliss contained within
a large plastic box. However, it wasn't so much the new technology that
computers then offered, moreover it was the fact that for the first time
ever, you could control what was being viewed on the ‘television'.

: g ’ Instead of simply playing one of the thousands of games available at the

Times have changed since programming in the ‘80s, time, many users decided they wanted to create their own content, their

but the core values still remain. own games; or simply something that could help them with their homework
or home finances. The simplicity of the 8-bit home computer meant that
creating something from a few lines of BASIC code was achievable and so

i J
| t S U p to yo U the first generation of home-bred programmer was born.

From that point on, programming expanded exponentially. It wasn't long

h OW Fa r to ta ke before the bedroom coder was a thing of the past and huge teams of

designers, coders, artists and musicians were involved in making a single
game. This of course led to the programmer becoming more than simply

y O U r CO d i n g someone who could fashion a sprite on the screen and make it move at the

press of a key.

n
a d Ve n tu re ! Naturally, time has moved on and with it the technology that we use.
However, the fundamentals of programming remain the same; but what
exactly does it take to be a programmer?
The single most common trait of any programmer, regardless of what
At they're doing, is the ability to see a logical pattern. By this we mean
— L B someone who can logically follow something from start to finish and
ziggmgmunaué); envisage the intended outcome. While you may not feel you're such a
Z‘f,:gﬁtﬁ}ééiég'i)io i B Bomeri Sinaiily person, it is possible to train your brain into this way of thinking. Yes, it
ki) ’ ’ takes time but once you start to think in this particular way you will be able
window(1,25,80,25); to construct and follow code.
for(int x=0;x<79;x++)
e
} ’ Second to logicis an understanding of mathematics. You don’t have to be
int t,speed=40; at a genius level but you do need to understand the rudiments of maths.
void ds(int jump=@) = .
GO Maths is all about being able to solve a problem and code mostly falls under
) ’ the umbrella of mathematics.
xf(jzzgf=6)
::tgg‘m""z) Being able to see the big picture is certainly beneficial for the modern
winqo:ﬁ%ilS-t,lS,ZS); " programmer. Undoubtedly, as a programmer, you will be part of a team
§§?§:::E-- mnnnnnu";; of other programmers, and more than likely part of an even bigger team
cprin - annanann"); . . . ¥
cﬂr;nggz annsannn); of designers, all of whom are creating a final product. While you may only
— &y.gg: A maAnARMMN § be expected to create a small element of that final product, being able to
;s&_:m- ""ﬁﬂﬂ,ﬂﬁﬂﬂﬂﬁ” " understand what everyone else is doing will help you create something
if(jump==1 || jump==2){ i : % . < . A
cpr;ngzu ann nn ; that's ultimately better than simply being locked in your own coding cubicle.
cprintf(" oMo onm “)3
}else if(a==1)
épn;n:ﬁ: nan o2 Finally, there's also a level of creativity needed to be a good programmer.
a2 = 2 Again though, you don’t need to be a creative genius, just have the
else if(a==2) imagination to be able to see the end product and how the user will interact
éprintf(" nam nn Y3 Wlth it.
cprintf(" nm a3
a=1;
Y orinte(e . “); There is of course a lot more involved in being a programmer, including
g castspecal; learning the actual code itself. However, with time, patience and the
void obj() 5 v
H determination to learn, anyone can become a programmer. Whether
Being able to follow a logical pattern and you want to be part of a triple-A video game team or simply create an
see an end result is one of the most valued automated routine to make your computing life easier, it's up to you how
skills of a programmer. far to take your coding adventure!

www.bdmpublications.com _

A Brief History of Coding

It's easy to think that programming a machine to automate a process, or calculate a value,
is a modern concept that's only really happened in the last fifty years or so. However, that
assumption is quite wrong, coding has actually been around for quite some time.

0100001101101111 01100100 01101001 01101110 01100111

Essentially all forms of coding are made up of ones and zeros - on or off states. This works
for both a modern computer and even the oldest known computational device.

It's difficult to pinpoint an exact
start of when humans began to
‘program’ a device. However,

it's widely accepted that the
Antikythera Mechanism is possibly
the first ‘coded’ artefact. It's
dated to about 87 BC and is an
ancient Greek analogue computer
and orrery used to predict
astronomical positions.

1842-1843

1930-1950

Joseph Marie Jacquard invents a
programmable loom, which used cards with
punched holes to create the textile design.
However, it is thought that he based his
design on a previous automated weaving
process from 1725, by Basile Bouchon.

The Banl Msa brothers, three Persian
scholars who worked in the House of
Wisdom in Baghdad, published the
Book of Ingenious Devices in around
850 AD. Among the inventions listed
was a mechanical musical instrument:
a hydro-powered organ that played

interchangeable cylinders automatically.

10 www.bdmpublications.com

Ada Lovelace translated
the memoirs of the Italian
mathematician, Francis
Maneclang, regarding
Charles Babbage's
Analytical Engine. She
made copious notes within
her writing, detailing a
method of calculating
Bernoulli Numbers

using the engine. This is
recognised as the First
computer program. Not
bad, considering there
were no computers
available at the time.

During the Second World
War, significant advances
were made in programmable
machines. Most notably, the
cryptographic machines used
to decipher military codes
used by the Nazis. The Enigma
was invented by the German
engineer Arthur Scherbius,
but was made famous by Alan
Turing at Bletchley Park's
codebreaking centre.

1951-1958 1959

RESET ACIA

SET 8 BITS AND 2 STOP

TART OF MONITOR

TNEEX

HEXRTS
RS

AF HEXERR JMP

The First true computer code was
Assembly Language (ASM) or
Regional Assembly Language. ASM
was specific to the architecture

of the machine on which it was
being used. In 1951, programming
languages fell under the generic
term Autocode. Soon languages
such as IPL, FORTRAN and ALGOL
58 were developed.

1960-1970

Computer programming

was mainly utilised by
universities, the military and
big corporations during the ‘60s
and the ‘70s. A notable step
toward a more user-friendly,
or home user, language was
the development of BASIC
(Beginners All-purpose
Symbolic Instruction Code) in
the mid-sixties.

Admiral Grace Hopper was part of
the team that developed the UNIVAC
| computer and she eventually
developed a compiler for it. In time,

the compiler she developed became
COBOL (Common Business-oriented
Language), a computer language that's
still in use today.

1970-1985

From the 1970s, the development of the likes of C, SQL, C with
Classes (C++), MATLAB, Common Lisp and more, came to the
fore. The ‘80s was undoubtedly the golden age of the home
computer, a time when silicon processors were cheap enough for
ordinary folk to buy. This led to a boom in home/bedroom coders
with the rise of 8-bit machines.

1990s-Present Day

ABAP
Py Visual Basic Logo <-.>
Erlang c4#D Prolog @ ColdFusion

JavaScrl b oo 2
Assembly Scrabch Pybhsgggm C++

Haskelles

ActionScript

g

The Internet age brought a wealth of new
programming languages and allowed
people access to the tools and knowledge
needed to learn coding in a better way.
Not only could a user learn how to code,
they could also freely share their code and
source other code to improve their own.

www.bdmpublications.com 11

) cangsianed |
What can You

Do with Python?

Python is an open-source, object-oriented programming language that's simple
to understand and write, yet also powerful and extremely malleable. It's these
characteristics that help make it such an important language to learn.

Python'’s ability to create highly readable code within a small set find lots of examples of this, where Python is acting behind the
of instructions has a considerable impact on our modern digital scenes. This is why it's such an important language to learn.
world. From the ideal, first programmers’ choice to its ability to
create interactive stories and games; from scientific applications to Beautifi /s bettes tan tighy
artificial Intelligence and web-based applications, the only limit to Explicit Is better than implicit
/ , 7 / 7 L7 Simple is better than complex
Python is the imagination of the person coding in it. Complex is better than complicated
Flat is better than nested
Sparse is better than dense
’) . H . Readability counts
It’s Python S mall-eablfz deS|gn that makes itan !deal language fOI’ Special cases aren't special enough to break the rules
many different situations and roles. Even certain aspects of the é\'mouq:‘ prachicaity beats oLy
’ ~ A / crrors should never pass silently.
coding world, that require more efficient code, still use Python. Unless explicitly silenced
o In the face of ambiguity, refuse the temptation to guess
For example, NASA utilises Python both as a stand-alone language There should be one-- and preferably only one --obvious way to do it
and as a brudge between other programming languages. ThIS way, »;:I(;uoI\;(Z\ettlt\:'l lv]:.;\'/‘ rlv‘lslev'\m be obvious at first unless you're Dutch
NASA scientists and engineers are able to get to the data they Although never is often better than *right* now
A 7 4 A / If the implementation is hard to explain, it's a bad idea
nQEd WlthOUt haVIng tO Cross mUltlDle language bar”ersl Python If the implementation is easy to explain, it may be a good idea
flllS the gaps and provides the means to get thejob done. YOU’" Namespaces are one honking great idea -- let's do more of those!

BIG DATA

Big data is a buzzword you're likely to have come across in the last couple of years.
Basically, it means extremely large data sets that are available for analysis to reveal
patterns, trends and interactions between humans, society and technology. OFf course,
it's not just limited to those areas, big data is currently being used in a variety of
industries, from social media to health and welfare, engineering to space exploration

ATl False
and beyond. T e x":"zgis:‘
= False
Python plays a substantial role in the world of big data. It's extensively used to analyse wﬁz -

huge chunks of the available big data and extract specific information based on i:c;i:c:: :"e end -add
what the user/company requires from the wealth of numbers present. Thanks to an ob.select

impressive set of data processing libraries, Python makes the act of getting to the data, ‘.'te":c:::?e{a:g‘:..
in amongst the numbers, that counts and presenting it in a fashion that’s readable and , ob.select = @

useable for humans.

bpyl- ontext.selected_obj¥
~" . #ata.objects[one. name].seM

There are countless libraries and freely available modules that enable fast, secure and arint(” lect exacthy
more importantly, accurate processing of data from the likes of supercomputing clusters. > | ASSES -~

For example, CERN uses a custom Python module to help analyse the 600 million = 2 w

collisions per second that the Large Hadron Collider (LHC) produces. A different language - '
handles the raw data, but Python is present to help sift through the data so scientists

can get to the content they want without the need to learn a far more complex ' gypes-ope” tg r): e se1ectd -
programming language. ‘ -, X '1 ”’r ror, mirror— =

a2 www.bdmpublications.com

ARTIFICIAL INTELLIGENCE

Artificial Intelligence and Machine Learning are two of the
most groundbreaking aspects of modern computing. Al is the
umbrella term used for any computing process wherein the
machine is doing something intelligent, working and reacting
in similar ways to humans. Machine Learning is a subset of Al
and provides the overall Al system with the ability to learn
from its experiences.

However, Al isn't simply the creation of autonomous robots
intent on wiping out human civilisation. Indeed, Al can be
found in a variety of day-to-day computing applications where
the ‘machine’, or more accurately the code, needs to learn
from the actions of some form of input and anticipate what
the input is likely to require, or do, next.

This model can be applied to Facebook, Google, Twitter,
Instagram and so on. Have you ever looked up a celebrity on
Instagram and then discovered that your searches within other
social media platforms are now specifically targeted toward
similar celebrities? This is a prime example of using Al in
targeted advertising and behind the code and algorithms that
predict what you're looking for, is Python.

Spotify, for example, uses Python based code, among

other things, to analyse your musical habits and @
offer playlists based on what you've listened to

in the past. It's all clever stuff and, moving
forward, Python is at the forefront of the way
the Internet will work in the future. 1

WEB DEVELOPMENT

Web development has moved on considerably since the early
days of HTML scripting in a limited text editor. The many
frameworks and web management services available now
means that building a page has become increasingly complex.

With Python, the web developer has the ability to create
dynamic and highly secure web apps, enabling interaction with
other web services and apps such as Instagram and Pinterest.
Python also allows the collection of data from other websites
and even apps built within other websites.

£

</>
-

<code>

can You Do with Python?

@ Minecraft Launcher

o ENGLISH - UNITED KINGDOM QERTICE602 v HELP

MIHECRAF\ X

News Skins Settings Launch options

&MOJANG

Although you won't find too many triple-A rated games coded using
Python, you may be surprised to learn that Python is used as an
extra on many of the high-ranking modern games.

The main use of Python in gaming comes in the form of scripting,
where a Python script can add customisations to the core game
engine. Many map editors are Python compatible and you will also
come across it if you build any mods for games, such as The Sims.

A lot of the online, MMORPG (Massively Multiplayer Online Role-
Playing Game) games available utilise Python as a companion
language for the server-side elements. These include: code to
search for potential cheating, load balancing across the game's
servers, player skill matchmaking and to check whether the player's
client-side game matches the server's versions. There's also a
Python module that can be included in a Minecraft server, enabling
the server admin to add blocks, send messages and automate a lot
of the background complexities of the game.

PYTHON EVERYWHERE

As you can see, Python is quite a versatile
programming language. By learning Python,
you are creating a well-rounded skillset that's
able to take you into the next generation of
computing, either professionally or simply as
a hobbyist.

Whatever route you decide to take on your
coding journey, you will do well to have
Python in your corner.

www.bdmpublications.com 13

ﬁ Getting Started>

.

!
{

sYIaHNN

NOHLA

There's a
lot to like about

Python, but don’t just
take our word for it. Here are
some amazing facts and Figures
surrounding one of the most popular
programming languages of recent years.

Qe))

Alexa, Amazon's Virtual
Personal Assistant, uses
Python to help with
speech recognition.

DECEMBER

2018

As of the end of 2018,
Python was the most
discussed language on
the Internet.

L
N

iy,

[/

W,
%

-

OVER 75% OF
RECOMMENDED
CONTENT FROM NETFLIX
IS GENERATED FROM
MACHINE LEARNING -
CODED BY PYTHON.

4 www.bdmpublications.com

l

PYTHON AND
LINUX SKILLS
ARE THE THIRD
MOST POPULAR

" LT.SKILLS IN

THE UK.

L W

0%

b

90% OF ALL
FACEBOOK POSTS
ARE FILTERED
THROUGH PYTHON-
CODED MACHINE
LEARNING.

Data analysis and
Machine Learning are the
two most used Python
examples.

Disney Pixar uses Python
in its Renderman software
to operate between other

graphics packages.

Sl
75%

b o

“,

IT'S ESTIMATED
THAT OVER 75% OF
NASA'S WORKFLOW

AUTOMATION

SYSTEMS ON-BOARD
THE L.S.S. USE PYTHON.

< <Python in Numbers m

16,000 momame
R
M

creseivsssesvassbeane i~ MOST SOUGHT-AETER

There are over 16,000 Python jobs

posted every six_months in the UK. = 2 JO BS | N TH E U K.

CRl

/

Python Data Science is Google is the top Data Science, Blockchain New York and San
thought to become the company for hiring Python and Machine Learning Francisco are the top
most sought-after job in developers, closely are the fastest growing Python developer cities

the coming years. followed by Microsoft. = Python coding skills. in the world.

Python developers enjoy an average salaryof o

==£60,000

W11 W11 W i
R 0 O % O 2, O %

9% T 15% 19% @ L 49%

([}
(v

%
%
%,

Wy,
\\\\\‘\ I’l[,,’
N
7 o>
Ul
sy,
\\\\\‘\ IIII,,,
W
7 o
7
Wy,
W=t
%, o>
Uty
iy
\\\\\\\ III[,,'
& M
2 o
ol W™

% S % o % S % &
//I[lll w‘“\\\\\ //Illl" w‘“\\\\\ /Illl”'w‘“\\\\\ /lllll’w“\\\\\\
95% OF ALL BEGINNER 75% OF ALL PYTHON 79% OF ALL 49% OF WINDOWS

CODERS START WITH DEVELOPERS USE PROGRAMMERS USE 10 DEVELOPERS
AND STILL USE, PYTHON 3, WHEREAS PYTHON ON A DAY-TO- USE PYTHON 3
PYTHON AS THEIR 25% STILL USE THE DAY BASIS, 21% USE AS THEIR MAIN
PRIMARY OR OUTDATED PYTHON 2 IT AS ASECONDARY PROGRAMMING

SECONDARY LANGUAGE. VERSION. LANGUAGE. LANGUAGE.

www.bdmpublications.com _

Why Python?

There are many different programming languages available for the modern computer,
and some still available for older 8 and 16-bit computers too. Some of these languages

are designed for scientific work, others for mobile platforms and such. So why choose

Python out of all the rest?

PYTHON POWER

Ever since the earliest home computers were available, enthusiasts, users and professionals have toiled away until the wee
hours, slaving over an overheating heap of circuitry to create something akin to magic.

These pioneers of programming carved their way into a new
frontier, forging small routines that enabled the letter ‘A’ to scroll
across the screen. It may not sound terribly exciting to a generation
that's used to ultra high-definition graphics and open world, multi-
player online gaming. However, forty-something years ago it was
blindingly brilliant.

Naturally these bedroom coders helped form the foundations for
every piece of digital technology we use today. Some went on to
become chief developers for top software companies, whereas
others pushed the available hardware to its limits and founded the
billion pound gaming empire that continually amazes us.

Regardless of whether you use an Android device, iOS device, PC,
Mac, Linux, Smart TV, games console, MP3 player, GPS device built-in
to a car, set-top box or a thousand other connected and ‘smart’
appliances, behind them all is programming.

All those aforementioned digital devices need instructions to tell
them what to do, and allow them to be interacted with. These
instructions form the programming core of the device and that core
can be built using a variety of programming languages.

The languages in use today differ depending on the situation, the
platform, the device's use and how the device will interact with its

£i: Bombs - GUI - ThelDE - [d:\uppsrc\CtriLib\ArrayCtrl.cpp windows-1252] { examples }

File Edit Macro Project Build Debug Assist Setup Ln 639, Col 45
& Ba @ |leu vilvmscricboebucv || B B B S S > 0O
B Bombs &P plugin/bmp SetCursor(p.y);
B ctriib pluginiz ctrl::childGotFocus();
B Ctricore &P pluginipng
@RichText <prj-aux: . .
g rdiDraw @ <ide-aux> zmd ArraycCtrl::childLostFocus()
ggs:’ s if(cursor >= 0)
RefreshRow(cursor) ;
ctrl::childLostFocus();
EditCtrl.h & Akeys.cpp ~
& EditField.cpp $# RichText.h T
$# TextEdit.h & RichTextview.cpp void ArrayCtrl::Paint(Draws w) {
& Text.cpp & Prompt.cpp LTIMING("Paint");
@ LineEdit.cop @ Help.cpp Size size = GetSize();
& DocEdit.cpp $# DateTimeCtrl.h ?eﬁgtzt;)m = G
) . = 0;
g;i:z::g::::pp g(;:e'ﬁmectrl.cpp t.nool'hfsfocus = HasFo?usDeep():
int 1 = GetLineAt(sb);
HeaderCtrlh # Barh int xs = -header.GetScroll();
& HeaderCtrl.copp | @ Bar.cpp int js; : =
ArrayCtrlh & MenuBar.cpp for(js = 0; js < column.GetCount(); js++) {
& ArrayCtrl.cpp | & ToolBar.cpp int cw = header.GetTabwidth(js);
DropChoice.h & ToolTip.cpp if ((xs + cw - vertgrid + (js == column.GetCount() - 1)) >= 0)
& DropBox.cpp # StatusBar.h break; I
& Droplist.cpp & StatusBar.cpp XS += cw;
& DropPusher.cop | (B> TabCtrl } 1 1
& DropChoice.cop | # TabCtrlh golor fc_= Blend(SColorDisabled, SColorPaper);
0 $# StaticCtrl.h & TabCtrl.cpp if(1TsNull(i)) 0
‘I @ Static.cpp (> TreeCtrl while(i < GetCount()) { O 0
splitter.h # TreeCtrlh [‘.top = GetL;neY(l) - sb; X
] & Splitter.cpp & TreeCtrl.cpp if(r.top > size.cy) brei_-xk; - O
‘l & FramesSplitter.cpp | (B> DigColor f'bOtt?m :‘r.top + GetLineCy(i); 0 O
$# SliderCtrl.h # DlgColor.h int x =).(s: - i bl
' ‘I 'I 'l & siderCtl.cpp © DiaColor cop for(int j = js; j < column.GetCount(); j++) { 011
! int cw = header.GetTabwidth(j);
O ‘l # Coluan!st.h & ColorPopup.cpp int cm = column[j].margin; O 0
& ColumnList.cpp | € ColorPusher.cpp if(cm < 0)
] 1 13 progressih (B> FileSel cm = header.Tab(j).GetMargin(); 10
O -I -I & Progress.cpp # FileSel.h if(x > size.cx) break; 01
AKeys.h & FileList.cpp ra.left = x;
0001 010 101 o 0 0 101 0 o] Q000 11 1 0
1 1 100 0 1

0 11 0 1 0 1 0 00 0
0 www.b@\quli@tions.(em| 1 0 O o0

) 1110] 000000 1 1

S Came i =

-_—— - O
O —
[~ Qe g
-—
[
1 OO

environment or users. Operating systems, such as Windows, macOS
and such are usually a combination of C++, C#, assembly and some
form of visual-based language. Games generally use C++ whilst web
pages can use a plethora of available languages such as HTML, Java,
Python and so on.

More general-purpose programming is used to create programs,
apps, software or whatever else you want to call them. They're
widely used across all hardware platforms and suit virtually every
conceivable application. Some operate faster than others and some
are easier to learn and use than others. Python is one such general-
purpose language.

Python is what's known as a High-Level Language, in that it ‘talks’
to the hardware and operating system using a variety of arrays,
variables, objects, arithmetic, subroutines, loops and countless
more interactions. Whilst it's not as streamlined as a Low-Level
Language, which can deal directly with memory addresses, call
stacks and registers, its benefit is that it's universally accessible
and easy to learn.

1 file: Invoke.java

pAllimport java.lang.reflect.*

3

Sl class Invoke {

5 public static void main(string [] args) {

6 try {

7 Class ¢ = Class.forName(args[0]);

8 ?ﬁt?o? ? = c.getMethod(args[1], new Class
Object ret = m.invoke(null, null);
system.out.print]n(

Invoked static method: " + args[1]
" of class: " + args[0]
+ " with no args\nResults: " + ret);

} catch (c1assNotFoundException e) 4
// Class.forName() can't find the class
} catch (NosuchMethodExcept1on e2) {
// that method doesn't exist
} catch (I11eﬁa1AccessExcept1on e3) {
// we don't have permission to invoke that
method
} catch (InvocationTargetException e4) {
// an exception ocurred while invoking that
method
system.out.printin(
"Method threw an: " + e4.
getTargetException());

"

Javais a powerful
language that's used in
web pages, set-top boxes,
TVs and even cars.

e
o

Python was created over twenty six years ago and has evolved to
become an ideal beginner’s language for learning how to program a
computer. It's perfect for the hobbyist, enthusiast, student, teacher
and those who simply need to create their own unique interaction
between either themselves or a piece of external hardware and the
computer itself.

Python is free to download, install and use and is available for Linux,
Windows, macOS, MS-DOS, 0S/2, BeOS, IBM i-series machines, and
even RISC OS. It has been voted one of the top five programming
languages in the world and is continually evolving ahead of the
hardware and Internet development curve.

So to answer the question: why Python? Simply put, it's free, easy to
learn, exceptionally powerful, universally accepted, effective and a
superb learning and educational tool.

BASIC was once the starter language that early
8-bit home computer users learned.

print(HANGMAN[@])
attempts = len(HANGMAN) - 1

while (attempts != @ and "-" in word_guessed):
print(("\nYou have {} attempts remaining").format(attempts))
joined_word = "".join(word_guessed)
print(joined_word)

try:
player_guess = str (mput("\nPlease select a letter between A-Z" +
except: # check val
print(” That Aol ror vatin input. Please try again.")
continue
else:
if not player_guess.isalpha(): # check the input is a letter. Also checks a
print(“That is not a letter. Please try again.)

"\n> ")).

continue

elif len(player_guess) > 1: # check the input is on one letter
print("That is more than one letter. Please try again.”)
continue

elif player_guess in guessed letters: # c t letter hasn't been guessed
print("You have already guessed that letter Please try agam.")
continue

else:
pass

guessed_letters.append(player_guess)
for letter in range(len(chosen_word)):
if player_guess == chosen_word[letter]:

word_guessed[letter] = player_guess # replace all letters in the chosen

if player_guess not in chosen_word:

Python is a more modern take on BASIC, it's easy to learn
and makes for an ideal beginner’s programming language.

www.bdmpublications.com

2 T
Python on the Pi

If you're considering on which platform to install and use Python, then give some
thought to one of the best coding bases available: the Raspberry Pi. The Pi has many
advantages for the coder: it's cheap, easy to use, and extraordinarily flexible.

THE POWER OF PI

While having a far more powerful coding platform on which to write and test your code is ideal, it's not often feasible. Most of
us are unable to jump into a several hundred-pound investment when we're starting off and this is where the Raspberry Pi can

help out.

While having a far more powerful coding platform on which to
write and test your code is ideal, it's not often feasible. Most of us
are unable to jump into a several hundred-pound investment when
we're starting off and this is where the Raspberry Pi can help out.

The Raspberry Pi is a fantastic piece of modern hardware that

has created, or rather re-created, the fascination we once all had
about computers, how they work, how to code and foundation
level electronics. Thanks to its unique mix of hardware and custom
software, it has proved itself to be an amazing platform on which to
learn how to code; specifically, using Python.

While you're able, with ease, to use the Raspberry Pi to learn to
code with other programming languages, it's Python that has been
firmly pushed to the forefront. The Raspberry Pi uses Raspbian as
its recommended, default operating system. Raspbian is a Linux
OS, or to be more accurate, it's a Debian-based distribution of
Linux. This means that there's already a built-in element of Python
programming, as opposed to a fresh installation of Windows 10,
which has no Python-specific base. However, the Raspberry Pi
Foundation has gone the extra mile to include a vast range of
Python modules, extensions and even examples, out of the box.
So, essentially, all you need to do is buy a Raspberry Pi, follow the
instructions on how to set one up (by using one of our excellent
Raspberry Pi guides found at www.bdmpublications.com) and you
can start coding with Python as soon as the desktop has loaded.

Significantly, there’s a lot more to the Raspberry Pi, which makes

it an excellent choice for someone who is starting to learn how to
code in Python. The Pi is remarkably easy to set up as a headless
node. This means that, with a few tweaks here and there, you're able
to remotely connect to the Raspberry Pi from any other computer,
or device, on your home network. For example, once you've set up
the remote connectivity options, you can simply plug the Pi into the
power socket anywhere in your house within range of your wireless
router. As long as the Piis connected, you will be able to remotely
access the desktop from Windows or macOS as easily as if you were
sitting in front of the Pi with a keyboard and mouse.

Using this method saves a lot of money, as you don't need another
keyboard, mouse and monitor, plus, you won't need to allocate
sufficient space to accommodate those extras either. If you're pushed
for space and money, then for around £60, buying one of the many

18 www.bdmpublications.com

kits available will provide the Pi with a pre-loaded SD card (with the
latest Raspbian OS), a case, power socket and cables, this is a good
idea as you could, with very little effort, leave the Pi plugged into the
wall under a desk, while still being able to connect to it and code.

The main advantage is, of course, the extra content that the
Raspberry Pi Foundation has included out of the box. The reason

for this is that the Raspberry Pi’s goal is to help educate the

user, whether that's coding, electronics, or some other aspect of
computing. To achieve that goal the Pi Foundation includes different
IDEs for the user to compile Python code on; as well as both Python
2 and Python 3, there's even a Python library that allows you to
communicate with Minecraft.

There are other advantages, such as being able to combine Python
code with Scratch (an Object-Oriented programming language
developed by MIT, for children to understand how coding works) and
being able to code the GPIO connection on the Pi to further control
any attached robotics or electronics projects. Raspbian also includes
a Sense HAT Emulator (a HAT is a hardware attached piece of
circuitry that offers different electronics, robotics and motorisation
projects to the Pi), which can be accessed via Python code.

Consequently, the Raspberry Pi is an excellent coding base, as well
as a superb project foundation. It is for these, and many other,
reasons we've used the Raspberry Pi as our main Python codebase
throughout this title. While the code is written and performed on a
Pi, you're also able to use it in Windows, other versions of Linux and
macOS. If the code requires a specific operating system, then, don’t
worry; we will let you know in the text.

Everything you need to learn to code with Python is

@ included with the OS!

There’s no such

@ thing as too

much Pi!

Introduced on 24th June 2019, the Raspberry Pi 4 Model B is

a significant leap in terms of Pi performance and hardware
specifications. It was also one of the quickest models, aside from the
original Pi, to sell out.

With a new 1.5GHz, 64-bit, quad-core ARM Cortex-A72 processor, and

a choice of 1GB, 2GB, or 4GB memory versions, the Pi 4 is one-step
closer to becoming a true desktop computer. In addition, the Pi 4 was
launched with the startling decision to include dual-monitor support,
in the form of a pair of two micro-HDMI ports. You'll also find a pair

RASPBIAN BUSTER

In addition to releasing the Pi 4, the Raspberry Pi team also compiled
a new version of the Raspbian operating system, codenamed Buster.

In conjunction with the new hardware the Pi4 boasts, Buster does
offer a few updates. Although on the whole it's very similar in
appearance and operation to the previous version of Raspbian. The
updates are mainly in-line with the 4K’s display and playback, giving the
Pi 4 a new set of graphical drivers and performance enhancements.

In short, what you see in this book will work with the Raspberry Pi
4 and Raspbian Buster!

Once set up, you can remotely connect to the Pi's desktop

@ from any device/PC.
. |

of USB 3.0 ports, Bluetooth 5.0, and a GPU that's capable of handing
4K resolutions and OpenGL ES 3.0 graphics.

In short, the Pi 4 is the most powerful of the current Raspberry Pi
models. However, the different memory versions have an increased
cost. The 1GB version costs £34, 2GB is £44, and the 4GB version will
set you back £54. Remember to also factor in one or two micro-HDMI
cables with your order.

You can even test connected hardware with Python

@ remotely, via Windows.

www.bdmpublications.com 19

E Getting Started>

Using Virtual Machines

A Virtual Machine allows you to run an entire operating system from within an app

on your desktop. This way, you're able to host multiple systems in a secure, safe and
isolated environment. In short, it's an ideal way to code.

Sounds good, but what exactly is a Virtual Machine (VM) and
how does it work?

The official definition of a virtual machine is ‘an efficient, isolated
duplicate of a real computer machine’. This basically means that a
virtual machine is an emulated computer system that can operate in
exactly the same way as a physical machine, but within the confines
of a dedicated virtual machine operator, or Hypervisor.

The Hypervisor itself, is an app that will allow you to install a
separate operating system, creating a virtual computer system
within itself, complete with access to the Internet, your home
network and so on.

The Hypervisor will take resources from the host system - your
physical computer, to create the virtual computer. This means that
part of your physical computer’s: memory, CPU, hard drive space
and other shared resources, will be set aside for use in the virtual
machine and therefore won’t be available to the physical computer
until the hypervisor has been closed down.

This resource overhead
can be crippling for the
physical machine if you
don't already have enough
memory, or hard drive
space available, or your
computer has a particularly
slow processor. While it's
entirely possible to run
virtual machines on as little
as 2GB of memory, it's not
advisable. Ideally, you will
need a minimum of 8GB
of memory (you can get
away with 4GB, but again,
your physical computer
will begin to suffer with
the loss of memory to the
virtual machine), at least 25
to 50GB of free space on
your hard drive and a quad-
core processor (again, you
can have a dual-core CPU,
but that can cause a bottleneck on your physical computer).

mLinuxMint19.1\S(ripting\Python&C++ . I “” "

Coding for
Linux

Master Linux and expand your programming skills

FREE
Code

Our Linux titles contain
steps on how to install a
hypervisor and OS.

The limit to how many different virtual machines you host on your
physical computer is restricted, therefore, by the amount of physical
system resources you can allocate to each, while still leaving enough
for your physical computer to operate on.

n www.bdmpublications.com

Python 67 shel

Q k55 SE0

You're able to install Linux, and code inside a virtual
machine on a Windows 10 host.

VIRTUAL OS

From within a hypervisor you're able to run a number of different
operating systems. The type of OS depends greatly on the
hypervisor you're running, as some are better at emulating a
particular system over others. For example, VirtualBox, a free and
easy to use hypervisor from Oracle, is great at running Windows
and Linux virtual machines, but isn't so good at Android or macOS.
QEMU is good for emulating ARM processors, therefore ideal for
Android and such, but it can be difficult to master.

There are plenty of hypervisors available to try for free, with an
equal amount commercially available that are significantly more
powerful and offer better features. However, for most users, both
beginner and professional, VirtualBox does a good enough job.

Within a hypervisor, you're able to set up and install any of the
newer distributions of Linux, or if you feel the need, you're also able
to install some of the more antiquated versions. You can install early
versions of Windows, even as far back as Windows 3 complete with
DOS 6.22 - although you may find some functionality of the VM lost
due to the older drivers (such as access to the network).

With this in mind then, you're able to have an installation of Linux
Mint, or the latest version of Ubuntu, running in an app on your
Windows 10 PC. This is the beauty of using a virtual machine.
Conversely, if your physical computer has Linux as its installed
operating system, then with a hypervisor you're able to create a
Windows 10 virtual machine — although you will need to have a
licence code available to register and activate Windows 10.

Using virtual machines removes the need to dual-boot. Dual-booting
is having two, or more, physical operating systems installed on

the same, or multiple, hard drives on a single computer. As the
computer powers up, you're given the option to choose which OS
you want to boot into. While this sounds like a more ideal scenario
itisn’t always as straight forward as it sounds, as all the operating
systems that are booted into will have full access to the computer’s
entire system resources.

The problems with dual-booting come when one of the operating
systems is updated. Most updates cover security patching, or bug
fixing, however, some updates can alter the core - the kernel, of

the OS. When these changes are applied, the update may alter the
way in which the OS starts up, meaning the initial boot choice you
made could be overwritten, leaving you without the ability to access
the other operating systems installed on the computer. To rectify
this, you'll need to access the Master Boot Record and alter the
configuration to re-allow booting into the other systems. There's
also the danger of possibly overwriting the first installed OS, or
overwriting data and more often than not, most operating systems
don’t play well when running side-by-side. Indeed, while good, dual-
booting has more than its fair share of problems. In contrast, using a
virtual machine environment, while still problematic at times, takes
out some of the more nasty and disastrous aspects of using multiple
operating systems on a single computer.

Even old operating systems can be run inside a
virtual machine.

o
W Pubtications
Vindous 3.1

Virtual machines can be as simple, or as complex as your
needs require.

xfced-terminal .

UNTIE LT LR D

(Using Virtual Machines m

ADVANTAGES FOR CODERS

For the coder, having a virtual machine setup offers many
advantages, the most popular being cross-platform code. Meaning if
you write code within Windows 10, then with an installation of a
Linux distro in a hypervisor, you're able to quickly and effortlessly
power up the virtual machine and test your code in a completely
different operating system. From this, you're able to iron out any
bugs, tweak the code so it works better on a different platform and
expand the reach of your code to non-Windows users.

The advantage of being able to configure a development
environment, in specific ways for specific projects, is quite
invaluable. Using a virtual machine setup greatly reduces the
uncertainties that are inherent to having multiple versions of
programming languages, libraries, IDEs and modules installed, to
support the many different projects you may become involved in as
a coder. Elements of code that ‘talk’ directly to specifics of an
operating system can easily be overcome, without the need to
clutter up your main, host system with cross-platform libraries,
which in turn may have an effect on other libraries within the IDE.

Another element to consider is stability. If you're writing code

that could potentially cause some instability to the core OS

during its development phase, then executing and testing that
code on a virtual machine makes more sense than testing it on your
main computer; where having to repeatedly reboot, or reset
somethingdueto &+
the code’s
instabilities, can
become
inefficient and
just plain
annoying.

The virtual
machine
environment can
be viewed as a
sandbox, where
you're able to test
unsecure, or
unstable code without it causing harm, or doing damage, to your
main, working computer. Viruses and malware can be isolated
within the VM without infecting the main computer, you're able
to set up anonymity Internet use within the VM and you're able
to install third-party software without it slowing down your

main computer.

Coding in Python on the Raspberry
Pi Desktop OS inside a VM on
Windows 10!

GOING VIRTUAL

While you're at the early stages of coding, using a virtual machine
may seem a little excessive. However, it's worth looking into because
coding in Linux can often be easier than coding in Windows, as some
versions of Linux have IDEs pre-installed. Either way, virtualisation of
an operating system is how many of the professional and successful
coders and developers work, so getting used to it early on in your
skill set is advantageous.

To start, look at installing VirtualBox. Then consider taking a look

at our Linux titles, https://bdmpublications.com/?s=linux&post_
type=product, to learn how to install Linux in a virtual environment
and how best to utilise the operating system.

www.bdmpublications.com

ﬁ Getting Started>

Crea
Codi

(INg a

g Platform

The term ‘Coding Platform’ can denote a type of hardware, on which you can code,
or a particular operating system, or even a custom environment that's pre-built and
designed to allow the easy creation of games. In truth it's quite a loose term, as a
Coding Platform can be a mixture of all these ingredients, it's simply down to what
programming language you intend to code in and what your end goals are.

HARDWARE

Thankfully, coding at the
foundation level doesn't
require specialist equipment,
or a top of the range, liquid |-
hydrogen-cooled PC. If you
own a computer, no matter
how basic, you can begin to learn how to code. Naturally, if

your computer in question is a Commodore 64 then you may
have some difficulty following a modern language tutorial, but
some of the best programmers around today started on an
8-bit machine, so there’s hope yet.

Access to the Internet is necessary to download, install and
update the coding development environment, alongside a
computer with either: Windows 10, macOS, or Linux installed.
You can use other operating systems, but these are the ‘big
three’ and you will find that most code resources are written
with one, or all of these, in mind. .

..

‘ www.bdmpublications.com

Coding can be one of those experiences that sounds fantastic, but
to get going with it, is often confusing. After all, there’s a plethora
of languages to choose from, numerous apps that will enable you
to code in a specific, or range, of languages and an equally huge
amount of third-party software to consider. Then you access the
Internet and discover that there are countless coding tutorials
available, for the language in which you've decided you want to
program, alongside even more examples of code. It's all a little too
much at times.

The trick is to slow down and, to begin with, not look too deeply
into coding. Like all good projects, you need a solid foundation
on which to build your skill and to have all the necessary tools
available to hand to enable you to complete the basic steps. This
is where creating a coding platform comes in, as it will be your
learning foundation while you begin to take your first tentative
steps into the wider world of coding.

SOFTWARE [

. Interms of software,

. most of the development
environments - the tools
that allow you to code,

- compile the code and
execute it - are freely
available to download and install. There are some specialist :
tools available that will cost, but at this level they’re not :
+ necessary; so don't be fooled into thinking you need to purchase
¢ any extra software in order to start learning how to code.

essscscce

¢ Over time, you may find yourself changing from the
mainstream development environment and using a collection
of your own, discovered, tools to write your code in. It's all
personal preference in the end and as you become more
experienced, you will start to use different tools to get the
job done. :

essscscse

..

$60000000000000800000000000000000000000060000000000000800800000000
.

OPERATING SYSTEMS

Windows 10 is the most
used operating system in
the world, so it's natural
that the vast majority of
coding tools are written for Microsoft’s leading operating
system. However, don't discount macOS and especially Linux.

macOS users enjoy an equal number of coding tools to their
Windows counterparts. In fact, you will probably find that a
lot of professional coders use a Mac over a PC, simply because
of the fact that the Mac operating system is built on top of
Unix (the command-line OS that powers much of the world’s
filesystems and servers). This Unix layer lets you test programs
in almost any language without using a specialised IDE.

Linux, however, is by far one of the most popular and
important, coding operating systems available. Not only

does it have a Unix-like backbone, but also it's also free to
download, install and use and comes with most of the tools
necessary to start learning how to code. Linux powers most of
the servers that make up the Internet. It's used on nearly all of
the top supercomputers, as well as specifically in organisations
such as NASA, CERN and the military and it forms the base of
Android-powered devices, smart TVs and in-car systems. Linux,
as a coding platform, is an excellent idea and it can be installed
inside a virtual machine without ever affecting the installation
of Windows or macOS.

©6000

€00 6000

©80900

©000

THE RASPBERRY PI

If you haven't already heard
of the Raspberry Pi, then
we suggest you head over
to www.raspberrypi.org, and
check it out. In short, the Raspberry
Piis a small, fully functional computer that comes with its own
customised Linux-based operating system, pre-installed with
everything you need to start learning how to code in Python,
C++, Scratch and more.

It's incredibly cheap, costing around £35 and allows you to utilise
different hardware, in the form of robotics and electronics
projects, as well as offering a complete desktop experience.
Although not the most powerful computing device in the world,
the Raspberry Pi has a lot going for it, especially in terms of
being one of the best coding platforms available.

©8000s00s0000000000000000000000000000000000000 000000000000
eeececessccssesesessecssssesessecssesesessecssssesese00 s

seeee ssscceccsscecscsce eescessccscscvsssece

$000

YOUR OWN CODING PLATFORM

Whichever method you choose, remember that your coding
platform will probably change, as you gain experience and favour
one language over another. Don't be afraid to experiment along
the way, as you will eventually create your own unique platform
that can handle all the code you enter into it.

(Creating a Coding Platform m

©0060000000000000000000000000000000000000606000000000800000008000

VIRTUAL MACHINES

Avirtual machine is a piece of software that allows you toinstall a
fully working, operating system within the confines of the software
itself. The installed OS will allocate user-defined resources from the
host computer, providing memory, hard drive space etc., as well as
sharing the host computer’s Internet connection.

The advantage of a virtual et | :
machine is that you can work ‘ ‘-" a
with Linux, for example, without % T o

it affecting your currently e

installed host OS. This means
that you can have Windows 10
running, launch your virtual machine client, boot into Linux and use
all the functionality of Linux while still being able to use Windows.

This, of course, makes it a fantastic coding platform, as you can
have different installations of operating systems running from
the host computer while using different coding languages.
You can test your code without fear of breaking your host OS
and it's easy to return to a previous configuration without the
need to reinstall everything again.

Virtualisation is the key to most big companies now. You will
probably find, for example, rather than having a single server
with an installation of Windows Server, the IT team have
instead opted for a virtualised environment whereby each
Windows Server instance is a virtual machine running from
several powerful machines. This cuts down on the number
of physical machines, allows the team to better manage
resources and enables them to deploy an entire server
dedicated to a particular task in a fraction of the time.

essscscecesscssscnse

0000600000 00c000000O00BGST

ceceses

©000

MINIX NEO N42C-4

The NEO N42C-4 is an extraordinarily
small computer from mini-PC developer,
MINIX. Measuring just 139 x 139 x 30mm, this Intel N4200 CPU
powered, Windows 10 Pro pre-installed computer is one of the
best coding platforms we've come across.

e

The beauty, of course, lies in the fact that with increased storage
and memory available, you're able to create a computer that can
easily host multiple virtual machines. The virtual machines can
cover Linux, Android and other operating systems, allowing you
to write and test cross-platform code without fear of damaging,
or causing problems, with other production or home computers.

The MINIX NEO N42C-4 starts at around £250, with the base
32GB eMMC and 4GB of memory. You'll need to add another
hundred and fifty, or so, to increase the specifications, but
consider that a license for Windows 10 Pro alone costs £219
from the Microsoft Store and you can begin to see the benefits
of opting for a more impressive hardware foundation over the
likes of the Raspberry Pi.

000000000000 000

©000

www.bdmpublications.com

3 2
-—

LI

.....ﬁ..n. v... y
ks !

E
o
&
(%)
c
2
g
=}
=
a
£
°
Q
3
3
3

CHello, World m

Getting started with Python may seem a !
little daunting at First, but, thankfully, the
language has been designed with
simplicity in mind. Like most things, you
need to start slow, master the basics, H

learn how to get a result, and how to get
what you want from the code.

This section covers numbers and
expressions, user input, conditions and
loops and the types of errors you will
undoubtedly come across in your time
with Python: the core foundations of
good coding and Python code.

--

Equipment You Will Need
28 Getting to Know Python
30 How to Set Up Python in Windows
32 How to Set Up Python in Linux

34 Starting Python for the First Time
36 Your First Code

38 Saving and Executing Your Code

40 Executing Code from the Command Line

42 Numbers and Expressions

44 Using Comments
46 Working with Variables
48 User Input

50 Creating Functions

52 Conditions and Loops

54 Python Modules

56 Python Errors

58 Combining What You Know So Far
Python in Focus: Stitching Black Holes

www.bdmpublications.com

E Hello, World>

Equipment You

Will Need

You can learn Python with very little hardware or initial financial investment. You

don’t need an incredibly powerful computer and any software that's required is

freely available.

WHAT WE'RE USING

ThankFfully, Python is a multi-platform programming language available for Windows, macOS, Linux, Raspberry Pi and more. If
you have one of those systems, then you can easily start using Python.

ﬂ rli"k
=G

[T S T

m www.bdmpublications.com

| | COMPUTER

Obviously you're going to need a computer in order to learn how to program in
Python and to test your code. You can use Windows (from XP onward) on either a 32
or 64-bit processor, an Apple Mac or Linux installed PC.

| | ANIDE

An IDE (Integrated Developer Environment) is used to enter and execute Python
code. It enables you to inspect your program code and the values within the code, as
well as offering advanced features. There are many different IDEs available, so find
the one that works for you and gives the best results.

[] PYTHON SOFTWARE

macOS and Linux already come with Python preinstalled as part of the operating
system, as does the Raspberry Pi. However, you need to ensure that you're running
the latest version of Python. Windows users need to download and install Python,
which we'll cover shortly.

| | TEXTEDITOR

Whilst a text editor is an ideal environment to enter code into, it's not an absolute
necessity. You can enter and execute code directly from the IDLE but a text editor,
such as Sublime Text or Notepad++, offers more advanced features and colour coding
when entering code.

|| INTERNET ACCESS

Python is an ever evolving environment and as such new versions often introduce
new concepts or change existing commands and code structure to make it a more
efficient language. Having access to the Internet will keep you up-to-date, help you
out when you get stuck and give access to Python’s immense number of modules.

D TIME AND PATIENCE

Despite what other books may lead you to believe, you won't become a programmer
in 24-hours. Learning to code in Python takes time, and patience. You may become
stuck at times and other times the code will flow like water. Understand you're learning
something entirely new, and you will get there.

(Equipment You Will Need a

THE RASPBERRY PI

Why use a Raspberry Pi? The Raspberry Pi is a tiny computer that's very cheap to purchase, but offers the user a fantastic learning
platform. Its main operating system, Raspbian, comes preinstalled with the latest Python along with many modules and extras.

RASPBERRY PI

$ The Raspberry Pi 4 Model B is the latest version,
¢ incorporating a more powerful CPU, a choice of 1GB,

2GB or 4GB memory versions and Wi-Fi and Bluetooth
support. You can pick up a Pi from around £33, increasing
up to £54 for the 4GB memory version, or as a part of kit
for £50+, depending on the kit you're interested in.

escesescesesssssscscsssscsssse

©0008000000000

FUZE PROJECT

The FUZE is a learning environment built on the latest model
of the Raspberry Pi. You can purchase the workstations that
come with an electronics kit and even a robot arm for you

to build and program. You can find more information on the
FUZE at www.fuze.co.uk.

©ssscsececcssssesssssssssssssssos

0000000000000 0000000000000000

We have several great Raspberry Pi titles available via www.
bdmpublications.com. Our Pi books cover how to buy your
first Raspberry Pi,

set it up and use

it; there are some great step-
by-step project examples
and guides to get the most

$60000000000000000000600000000000000000000060000000000000800000000

The Raspberry Pi's main operating system is a Debian-based
Linux distribution that comes with everything you need in
a simple to use package. It's streamlined for the Pi and is an

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

ideal platform for hardware and software projects, Python FRraoSmthrer
programming and even as a desktop computer. Pi tgo Y

©000 0000000000000 000800sesscssssns

D B S O aryrenzizsme/ | amanp - romep [pewmmm
el

W ~
[

ssesesscsssss

rufwggﬁm.srsa IDE

e £ St D S Ao s
. ﬂ the
. € Power of he Raspber, p;
.8 8M Y P
1ips & tricks
N ide

&
W anacly >

r -, 3 & 4
Leam to g § < Create apqy;

S 7 ing
more rom he % 4 Piprojecs "9 | Mater e

¥ hordware X Pi

Packeq wit 3
= ,
;ha latest tps N
help. Leam poyy 4, -
create, o
Piypteamaang - [oosiRln

w & =

©00
€00 600

0000000000000 00000000000000000000 0000000000000 0000000 000000000

www.bdmpublications.com

E Hello, World)

Getting to
Know Python

Python is the greatest computer programming language ever created. It enables

you to fully harness the power of a computer, in a language that's clean and easy
to understand.

WHAT IS PROGRAMMING?

It helps to understand what a programming language is before you try to learn one, and Python is no different. Let's take a
look at how Python came about and how it relates to other languages.

secesccsscsscscsscscscsssssscnsse

PYTHON

A programming language

is a list of instructions that

a computer follows. These
instructions can be as simple
as displaying your name

or playing a music file, or

as complex as building a
whole virtual world. Python
is a programming language
conceived in the late 1980s
by Guido van Rossum

at Centrum Wiskunde &
Informatica (CWI) in the
Netherlands as a successor to
the ABC language.

Guido van Rossum, the
father of Python.

R —
o

v P

-~

N g !

seseseccssssesscsesessssesssssne

m www.bdmpublications.com

#0060 000600000000000000000000000000000000000000

PROGRAMMING RECIPES B e e ot e e e

recipe.txt x

Programs are like recipes for computers. A

A) A |Put 10@ grams of self-raising flour in a bowl.
recipe to bake a cake could go like this:

1

2 Add 1ee grams of butter to the bowl.
3 Add 10@ millilitres of milk.
4

4 5 Bake for half an hour.
Put 100 grams of self-raising flour in a bowl.

Add 100 grams of butter to the bowl.
Add 100 millilitres of milk.
Bake for half an hour.

CODE

Just like a recipe, a program consists of instructions that you follow
in order. A program that describes a cake might run like this:

(3 cokepy CUser\hucyhDropbo0 Action\cakerpy (27.11)
fle L4t fomet Run Options Window Iy
la Cake (object) :
et init (self):
self.ingredients = []
det cook(self,ingredients):
i "Baking cake ..."

cake = Cake ()

l bowl = 11

I Ellour =R00
I butter = 50
J milk = 100

| bowl .append ([flour,butter,milk]) cake. ook (boml)
I cake.cook (bowl)

bowl = []

flour = 100

butter = 50

milk - 100

bowl .append ([flour, butter, milk])

PROGRAM COMMANDS

You might not understand some of the Python commands, like bowl.append and cake.cook(bowl).
The first is a list, the second an object; we'll look at both in this book. The main thing to know is
that it's easy to read commands in Python. Once you learn what the commands do, it's easy to
figure out how a program works.

Python 3 4.2 Shell —ox cake py - /home/pi/Documents/cake py (3.4.2) o
Ele Edt Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) B
[6CC 4.5.1] on linux |
Type "copyright”. "credits” or "license()" for more information.

5> RESTART

| Elle Edt Format Run Options Windows Help

ass Cake(object):
Jef __init_ (self):
Self.ingredients = []
jof cook(self, ingredients):
print ("Baking cake...")

Baking cake...
- ! cake=Cake()

bowl = []

flour = 100

butter = 50

milk = 100

bowl.append([flour, butter, milk])

cake. cook(bowl)

©000

HIGH-LEVEL LANGUAGES

Computer languages that are easy to read are known as “high-level”.
This is because they fly high above the hardware (also referred to as
“the metal”). Languages that “fly close to the metal,” like Assembly,
are known as “low-level”. Low-level languages commands read a bit
like this:msg db ,0xa len equ $ - msg.

O e poganin % [
¢ [SRRR-RE— =7 & -
& - R :

wiarema High-level programming language
e

From ik o owoncyionds

PYTHON 3 VSPYTHON 2

<Getting to Know Python m

$00600

ZEN OF PYTHON

Python lets you access all the power of a computer in a language
that humans can understand. Behind all this is an ethos called “The
Zen of Python.” This is a collection of 20 software principles that
influences the design of the language. Principles include “Beautiful
is better than ugly” and “Simple is better than complex.” Type
import this into Python and it will display all the principles.

Python 3.4.2 Shell — (=i
Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1]) on linux

Type "copyright”, “"credits" or "license()" for more information.
>>> import this

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.

Sparse is better than dense.
Readability counts.

Special cases aren't special enough to break the rules. |

In a typical computing scenario, Python is complicated somewhat by the existence of two active versions of the language:

Python 2 and Python 3.

WORLD OF PYTHON Python 3.7 is the newest release
of the programming language.

However, if you dig a little deeper into the Python site, and investigate
Python code online, you will undoubtedly come across Python 2.
Although you can run Python 3 and Python 2 alongside each other; it's
not recommended. Always opt for the latest stable release as posted
by the Python website.

Downloads Documentation Community Success Stories

All releases

Download for Windows
Source code
Python 3.7.0
Windows
Note that Python 3.5+ cannot be used on Windows XP

Mac OSX or earlier.

Not the OS you are looking for? Python can be used on

Other Platforms . .
many operating systems and environments.

PYTHON 2.X

So why two? Well, Python 2 was originally
launched in 2000 and has since then
adopted quite alarge collection of modules, scripts, users, tutorials
and so on. Over the years Python 2 has fast become one of the first
go to programming languages for beginners and experts to code
in, which makes it an extremely valuable resource.

o

File Edit Shell Debug Options Window Help

Python 2.7.13 (v2.7.13:a06454blafal, Dec 17 2016, 20:42:59) [MSC v.1500 32 bit (
Intel)] on win32

Type "copyright", "credits" or "license()" for more information.

>>>

PYTHON 3.X In 2008 Python 3 arrived with several new
and enhanced features. These features
provide a more stable, effective and efficient programming
environment but sadly, most (if not all) of these new features are
not compatible with Python 2 scripts, modules and tutorials. Whilst
not popular at first, Python 3 has since become the cutting edge of
Python programming.

[@ Python 3.6.1 Shel — u]

File Edit Shell Debug Options Window Help

Python 3.6.1 (v3.6.1:69c0dbS5, Mar 21 2017, 17:54:52) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits" or "license()" for more information.

>>>

3.X WINS Python 3’s growing popularity has meant that
it’s now prudent to start learning to develop
with the new features and begin to phase out the previous version.
Many development companies, such as SpaceX and NASA use
Python 3 for snippets of important code.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default. Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright", "credits” or "license()" for more information.
>>> print (“Python 3.x is AWESOME!")

Python 3.x is AWESOME!

>>>

www.bdmpublications.com

m Hello, World>

How o Set Up
Python in Windows

Windows users can easily install the latest version of Python via the main Python

Downloads page. Whilst most seasoned Python developers may shun Windows as the
platform of choice for building their code, it's still an ideal starting point for beginners.

INSTALLING PYTHON 3.X

Microsoft Windows doesn’t come with Python preinstalled as standard, so it will be necessary to install it yourself manually.

ThankFully, it's an easy process to follow.
STEP 1 Start by opening your web browser to www.python.
org/downloads/. Look for the button detailing the
Download link for Python 3.x. Python is regularly updated, changing
the last digit for each bug fix and update. Therefore, don’t worry if
you see Python 3.8, or more, as long as it's Python 3, the code in this
book will work fine.

& python

About Downloads Documentation Communily

Download the latest version for Windows

Download Python 3.8.0

? Python for Window:

t versions of Python? Prerelea:

pecific releases

STEP 2 Click the Download button for version 3.x and
save the file to your Downloads folder. When the
file is downloaded, double-click the executable and the Python
installation wizard will launch. From here, you have two choices:
Install Now and Customise Installation. We recommend opting for
the Customise Installation link.

STEP 3 Choosing the Customise option allows you to
specify certain parameters, and whilst you may
stay with the defaults, it's a good habit to adopt as, sometimes (not
with Python, thankfully), installers can include unwanted additional
features. On the first screen available, ensure all boxes are ticked
and click the Next button.

©» Python 3.8.0 (32-bit) Setup = X

Optional Features
M Documentation
Installs the Python documentation file.
M pip
Installs pip, which can download and install other Python packages.
M td/tk and IDLE
Installs tkinter and the IDLE development environment.
Python test suite
Installs the standard library test suite,

+ L

py launcher for all users (requires elevation)

Upgrades the global ‘py" launcher from the previous version.

puthon
STEP 4 The next page of options include some interesting
additions to Python. Ensure the Associate file with
Python, Create Shortcuts, Add Python to Environment Variables,
Precompile Standard Library and Install for All Users options are

ticked. These make using Python later much easier. Click Install when
you're ready to continue.

© Python 3.8.0 (32-bit) Setup - %

Install Python 3.8.0 (32-bit)

| Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
C:\Users\david\AppData\Local\Programs\Python\Python38-32

Includes IDLE, pip and documentation
Creates shortcuts and file associations

—> Customize installation
Choose location and features

outhon

www.bdmpublications.com

@ Python 3.80 (32-bit) Setup - %

Advanced Options

M Install for all users

[Associate files with Python (requires the py launcher)
[Create shortcuts for installed applications

[4 Add Python to environment variables

[4 Precompile standard library

v

[J Download debugging symbols
[J Download debug binaries (requires VS 2015 or later)

Customize install location
C:\Program Files (x86)\Python38-32

Browse

puthon

STEP 5 You may need to confirm the installation with
the Windows authentication notification. Simply
click Yes and Python will begin to install. Once the installation is
complete, the final Python wizard page will allow you to view the
latest release notes and follow some online tutorials.

% Python 3.8.0 (32-bit) Setup e X
Setup was successful
—
Special thanks to Mark Hammond, without whose years of
freely shared Windows expertise, Python for Windows would
still be Python for DOS.
New to Python? Start with the online tutorial and
documentation.
See what's new in this release.
python
f
windows Close

STEP 6 Before you close the install wizard window
however, it's best to click on the link next to the
shield detailed Disable Path Length Limit. This will allow Python
to bypass the Windows 260 character limitation, enabling you to
execute Python programs stored in deep folders arrangements.
Click Yes again, to authenticate the process, then you can Close the
installation window.

® Disable path length limit
Changes your machine configuration to allow programs, including Python, to
bypass the 260 character "MAX_PATH" limitation

Close

STEP 7 Windows 10 users can now find the installed Python
3.x within the Start button Recently Added section.
The First link, Python 3.x (32-bit) will launch the command line
version of Python when clicked (more on that in a moment). To open
the IDLE, type IDLE into Windows start.

Al Apps

Documents Email Web More v Feedback

Best match

. IDLE (Python 3.8 32-bit)

App

A

Al

i IDLE (Python 3.8 32-bit)
=] idle.bat > App
Search the web

R idle - see web results >

Open
Documents (12+) Run as administrator
Folders (2+) Open file location
Store (2) Pin to Start

Pin to taskbar

Uninstall

<How to Set Up Python in Windows m

STEP 8 Clicking on the IDLE (Python 3.x 32-bit) link will launch

the Python Shell, where you can begin your Python
programming journey. Don’t worry if your version is newer, as long
as it’s Python 3.x our code works inside your Python 3 interface.

3) [MSC v.1916 32 bit (In

rore information.

STEP 9 If you now click on the Windows Start button again,
and this time type: CMD, you'll be presented with
the Command Prompt link. Click it to get to the Windows command
line environment. To enter Python within the command line, you
need to type: python and press Enter.

STEP 10 The command line version of Python works in
much the same way as the Shell you opened in
Step 8; note the three left-facing arrows (>>>). Whilst it's a perfectly
fine environment, it’s not too user-friendly, so leave the command
line for now. Enter: exit () to leave and close the Command
Prompt window.

www.bdmpublications.com _

Hello, World>

How o Set Up
Python in Linux

While the Raspberry Pi's operating system contains the latest, stable version of Pytho

other Linux distros don’t come with Python 3 pre-installed. If you're not going down
the Piroute, then here’s how to check and install Python for Linux.

PYTHON PENGUIN

Linux is such a versatile operating system that it's often difficult to nail down just one-way of doing something. Different
distributions go about installing software in different ways, so for this particular tutorial we will stick to Linux Mint.

STEP 1 First you need to ascertain which version of Python
is currently installed in your Linux system. To begin
with, drop into a Terminal session from your distro’s menu, or hit the
Ctrl+Alt+T keys.

david@david-Mint: ~

File Edit View Search Terminal Help

@david-Mint:

STEP 2 Next, enter: python --version into the Terminal
screen. You should have the output relating to
version 2.x of Python in the display. Most Linux distro come with
both Python 2 and 3 by default, as there’s plenty of code out there
still available for Python 2. Now enter: python3 --version.

david@david-Mint: ~

File Edit View Search Terminal Help

$ python --version

$ python3 --version

STEP 3 In our case we have both Python 2 and 3 installed.
As long as Python 3.x.x is installed, then the code in
our tutorials will work. It's always worth checking to see if the distro
has been updated with the latest versions, enter: sudo apt-get
update && sudo apt-get upgrade to update the system.

david@david-Mint: ~

File Edit View Search Terminal Help

:~$ python --version

:~$ python3 --version

t:~$ sudo apt-get update &% sudo apt-get upgrade
passumd for david:

n www.bdmpublications.com

STEP 4 Once the update and upgrade completes, enter:
python3 --version again to see if Python 3.x is

updated, or even installed. As long as you have Python 3.x, you're
running the most recent major version, the numbers after the 3.
indicate patches plus further updates. Often they're unnecessary,
but they can contain vital new elements.

File Edit View Search Terminal Help

Need to get 1,409 kB of archives.
After this operation, 23.6 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libasound2 amd6
2 [359 kB]
http://archive.ubuntu.com/ubuntu bionic-updates/main amd64 libasound2-data
2 [36.5 kB]
p://archive.ubuntu.com/ubuntu bionic-updates/main amd64 linux-libc-dev

amd64 4.15.0-44.47 [1,013 kB]
Fetched 1,409 kB in @0s (3,023 kB/s)
(Reading database ... 290768 files and directories currently installed.)
Preparing to unpack ./libasound2 1.1.3-5ubuntu@.2 amd64.deb ...
Unpacking libasound2:amd64 (1.1.3-5ubuntu@.2) over (1.1.3-5ubuntue.l) ...
Preparing to unpack .../libasound2-data 1.1.3-5ubuntu6.2 all.deb ...
Unpacking libasound2-data (1.1.3-5ubuntu@ over (1.1.3-5ubuntue.l) ...
Preparing to unpack .../linux-libc-dev 4.15.0-44.47 amd64.deb ...
Unpacking linux- lle'dEV amd64 (4.15.0-44.47) over (4.15.0-43.46) ...
Stttlnq up libasound2-data (l b 15 3 Subuntu v

STEP 5 However, if you want the latest, cutting edge
version, you'll need to build Python from source.

Start by entering these commands into the Terminal:

sudo apt-get install build-essential checkinstall
sudo apt-get install libreadline-gplv2-dev
libncursesw5-dev libssl-dev libsglite3-dev tk-dev
libgdbm-dev libcé6-dev libbz2-dev

david@david-Mint: ~ 3
File Edit View Search Terminal Help

nt:~$ sudo apt-get install build-essential checkinstall
d p: kage lists... Done
Building dependency tree
Reading state information... Done
build-essential is already the newest version (12.4ubuntul).
The following NEW packages will be installed
checkinstall

© to upgrade,
Need to get 97.1 kB of archives.

1 to newly install, © to remove and 3 not to upgrade.

After this operation, 438 kB of additional disk space will be used.
Do you want to continue? [Y/n] y

©000

Open up your Linux web browser and go to the
Python download page: https://www.python.org/

downloads. Click on the Downloads, followed by the button under
the Python Source window. This opens a download dialogue box,
choose a location, then start the download process.

e python”

About

Opening Python-3.7.2.tar.xz
You have chosen to open:
Python-3.7.2.tarxz

which is: XZ archive (16.3 MB)
from: https:/www.python.org

Download

What should Firefox do with this file?

Hello, I'm Python! Openwith | Archive Manager (default) v

Save File

wha s
g A Cancel
hon

©900000000000006006000000000

STEP 7

contents of the downloaded Python source code with: tar -xvf
Python-3.Y.Y.tar.xz (replace the Y's with the version numbers
you've downloaded). Now enter the newly unzipped folder with: cd
Python-3.Y.Y/

In the Terminal, go to the Downloads folder
by entering: cd Downloads/. Then unzip the

.2/0bjects/clinic/floatobject.c.h
-3.7.2/0bjects/clinic/funcobject.c.h
Objects/clinic/longobjec h

h

.2/0bjects/clinic/dictobject.
2/0bjects/clinic/structseq.c
.7.2/0bjects/clinic/tupleobject.
.2/0bjects/clinic/moduleobject.
.7.2/0bjects/clinic/odictobject.c.
.2/0bjects/bytearrayobject.c
.2/0bjects/typeobject.c
.2/0bjects/lnotab_notes.txt
.2/0bjects/methodobject.c
Objects/tupleobject.c
.2/0bjects/obmalloc.c
.2/0bjects/object.c
2/0bjects/abstract.c
Objects/listobject.c
Objects/bytes methods.c
.2/0bjects/dictnotes. txt
-3.7.2/0bjects/typeslots.inc
fin $ cd Python-3.7.2/
$

$00000000000000000000000000000000060000000000000000000600000000000

STEP 8 Within the Python folder, enter:

./configure
sudo make altinstall

This could take a while, depending on the speed of your computer.
Once finished, enter: python3.7 --version to checkthe latest
installed version. You now have Python 3.7 installed, alongside older
Python 3.x.x and Python 2.

checking for --with-ssl-default-suites...
: creating ./config.status

: creating Makefile.pre

: creating Misc/python.pc

: creating Misc/python-config.sh
config.status: creating Modules/ld_so aix
config.status: creating pyconfig.h
creating Modules/Setup
creating Modules/Setup.local

python

creating Makefile

If you want a release build with all stable optimizations active (PGO, etc),
please run ./configure --enable-optimizations

$ sudo make altinstall

How to Set Up Python in Linux

$00600

sudo apt-get install idle3

For the GUI IDLE, you'll need to enter the following
command into the Terminal:

The IDLE can then be started with the command: idle3. Note, that
IDLE runs a different version to the one you installed from source.

david@david-Mint: ~/Downloads/Python-3.7.2

File Edit View Search Terminal Help

david@davi
Reading package lists...
Building dependency tree
Reading state information... Done
The following additional packages will be installed:

blt idle idle-python3.6 python3-tk tk8.6-blt2.5
Suggested packages:

blt-demo tix python3-tk-dbg
The following NEW packages will be installed

blt idle idle-python3.6 idle3 python3-tk tk8.6-blt2.5
© to upgrade, 6 to newly install, © to remove and 3 not to upgrade.
Need to get 938 kB of archives.
After this operation, 4,221 kB of additional disk space will be used.
Do you want to continue? [Y/n] l

$ sudo apt-get install idle3

Done

STEP 1 You'll also need PIP (Pip Installs Packages), which is
a tool to help you install more modules and extras.
Enter: sudo apt-get install python3-pip
Once PIP is installed, check for the latest update with:
pip3 install --upgrade pip

When complete, close the Terminal and Python 3.x will be available
via the Programming section in your distro’s menu.

id-Mint: ~/D loads/Python-3.7.2 =

File Edit View Search Terminal Help

ic id-Mint:
Reading package lists...
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
python-pip-whl python3-distutils python3-1lib2to3
Recommended packages:
python3-dev python3-setuptools python3-wheel
The following NEW packages will be installed
python-pip-whl python3-distutils python3-1lib2to3 python3-pip

$ sudo apt-get install python3-pip
Done

0 to upgrade, 4 to newly install, © to remove and 3 not to upgrade.
Need to get 1,984 kB of archives.

After this operation, 4,569 kB of additional disk space will be used.
Do you want to continue? [Y/n] I

$6000600000000000

PYTHON ON macOS

Installation of Python on macOS can be done in much the
same way as the Windows installation. Simply go to the Python
webpage, hover your mouse pointer over the Downloads

link and select Mac OS X from the options. You will then be
guided to the Python releases for Mac versions, along with the
necessary installers for macOS 64-bit for OS X 10.9 and later.

escscsecsssscscsssscsssscsssssssne
sececcccessssscsccsssssssccsee

.
©00 00000000

www.bdmpublications.com _

E Hello, World>

Starting Python for
the First Time

The Raspberry Pi offers one of the best all-round solutions on which to learn and code,

in particular, Python. Raspbian, the Pi's recommended OS, come pre-installed with the
latest stable version of Python 3, which makes it a superb coding platform.

STARTING PYTHON

Everything you need to begin programming with Python is available from the Raspberry Pi desktop. However, if you want,
drop into the Terminal and update the system with: sudo apt-get update.

$600060000000

STEP 1 With the Raspbian desktop loaded, click on the

Menu button followed by Programming > Python
3 (IDLE). This opens the Python 3 Shell. Windows and Mac users can
find the Python 3 IDLE Shell from within the Windows Start button
menu and via Finder.

DI EX
[pomes]

STEP 2 The Shell is where you can enter code and see the
responses and output of code you've programmed
into Python. This is a kind of sandbox, where you're able to try out
some simple code and processes.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help [

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information. ¥
>>>

www.bdmpublications.com

STEP 3 For example, in the Shell enter: 2+2
After pressing Enter, the next line displays the
answer: 4. Basically, Python has taken the ‘code’ and produced the
relevant output.

Python 3.4.2 Shell

Flle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[6CC 4.9.1] on linux ‘
Type “"copyright”, “"credits” or “"license()" for more information.
>>> 2+2

4

> |
I

4
4

STEP 4 The Python Shell acts very much like a calculator,
since code is basically a series of mathematical
interactions with the system. Integers, which are the infinite
sequence of whole numbers can easily be added, subtracted,
multiplied and so on.

Python 3.4.2 Shell - 0 x
Eile Edit Shell Debug QOptions Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) _\!

[GCC 4.9.1] on linux
Type "copyright”, "credits" or "license()" for more information.
>>> 242

>>> 23453+64545522
64568975

>>> 98778642342-12343
98778629999

>>> 1287437%43534
56047282358

>>> |

—

$000

While that's very interesting, it's not particularly
exciting. Instead, try this:

print (*Hello everyone!”)

Just enter it into the IDLE as you've done in the previous steps.

Python 3.4.2 Shell
File Edit Shell Debug Qptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright”, "credits”
>>> 242

4 |
>>> 8+6 i
14

>>> 23453+64545522 |
64568975

>>> 98778642342-12343
98778629999

>>> 1287437*%43534
56047282358

>>> print(“Hello e
Hello everyone!
>>>

ﬂ |

STEP 6 This is a little more like it, since you've just produced
your first bit of code. The Print command is fairly
self-explanatory, it prints things. Python 3 requires the brackets as

well as quote marks in order to output content to the screen, in this
case the ‘Hello everyone!’ bit.

" or “license()" for more information.

=»» print{“Hello everyone!™)
Hello everyone!
»>>> |

STEP 7 You may have noticed the colour coding within
the Python IDLE. The colours represent different

elements of Python code. They are:

Black — Data and Variables
Green —Strings

Purple — Functions
Orange — Commands

Blue — User Functions
Dark Red — Comments
Light Red — Error Messages

IDLE Colour Coding

Colour Use for Examples
Black Data & variables 23.6 area
Green Strings "Hello World"
Purple Functions len() print()

Orange Commands if for else
Blue User functions get_area()

Dark red Comments #Remember VAT

Light red Error messages SyntaxError:

<Starting Python for the First Time

STEP 8 The Python IDLE is a configurable environment. If
you don't like the way the colours are represented,
then you can always change them via Options > Configure IDLE and
clicking on the Highlighting tab. However, we don’'t recommend
that, as you won't be seeing the same as our screenshots.

|Python 3.4.2 (default, oOct 19 2014, 13:31:11) B

| (6cC 4.9.1] on linux

-
| Type_"copyright”, "credits” or "license()" for more information.

‘>>) 242

2 IDLE Preferences - e

>>> 8+6 ‘
14 Fonts/Tabs | Highlighting | Keys | General

4

e Custom Highlighting - Highlighting Theme
| >>> 08778642342-12343 Select :

98778629999
e iz Choose Colour for ¢ & aBuitdn Theme
| 56047282358 s

>>> print(“"Hello
Hello everyone!

[>>

STEP 9 Just like most programs available, regardless of the
operating system, there are numerous shortcut
keys available. We don’t have room for them all here but within the

Options > Configure IDLE and under the Keys tab, you can see a list
of the current bindings.

Normal Text

IDLE Classic -~
+ Foreground (Background
[Fyou can click here -

l#to choose items
f func(param):

var3 = list(llone)

|

NEFFGRN cursor
shell stdout stderr

Save as New Custom Theme

LE Preferences
Fonts/Tabs | Highlighting | Keys | General |
- Key Set

@ Use a Builtiin Key Set IDLE Classic Windows —

| save as New custom Key set

Custom Key Bindings

Action - Key(s)

beginning-of-ine - <Key-Home> Al
[center-insert - <Control-Key> <Control-Key-L> |
|ch: - <Alt: y-u> <Alt-Key-Us <

chang: Y
\check-module - <Alt-Key-x>
lel Bwindows - <C 1K |

y-q> <C
[close-window - <Alt-Key-F4> <Meta-Key-F4>
(gion - <AltKey-3> 3
copy - <Control-key-c> <Control-Key-C>
|cut - <Control-Keyx> <Control-KeyX>
|dedent i

S

Ok] Apply ‘ Cancel

$000

The Python IDLE is a power interface and one
that's actually been written in Python using one

of the available GUI toolkits. If you want to know the many ins and
outs of the Shell, we recommend you take a few moments to view

www.docs.python.org/3/library/idle.html, which details many of
the IDLE's features.

25.5. IDLE
Source code; L>

DLE 1 Pyt

Vesrated Deveiopmen and Loarmg

100 U519 40 <150 GUI 00k

he same on Windows, Unix. and Mac 05 X

. v,
« mull o fox ectorwih ol undo, Python colorceg. smerl ndont ol 5, aulo comcicton. and ofer feakures
. wndows,)

sbuge W breakponts, stopping, and viewng ofgobal o ocol namespoces
« contguraton, browsers, nd Ot GBS

25.5.1. Menus

IDLE has two man window types, the Shel window and ho Eir wdow. 15 posstie 1 have mul

' 8 subtype of et wind,

25,5.1.1. File menu (Shell and Editor)

NowFio
roat o new e odiing wdow

win an Open diiog

o5, Cack onato opon

g modse (s0archos sys pat)

www.bdmpublications.com

m Hello, World>

Your First Code

Essentially, you've already written your first piece of code with the ‘print(“Hello

everyone!”)' function from the previous tutorial. However, let's expand that and look at
entering your code and playing around with some other Python examples.

PLAYING WITH PYTHON

With most languages, computer or human, it's all about remembering and applying the right words to the right situation.
You're not born knowing these words, so you need to learn them.

STEP 1 If you've closed Python 3 IDLE, reopenitin
whichever operating system version you prefer. In

the Shell, enter the familiar following:

print(tHelMoZ)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type “copyright”, “"credits” or "license()" for more information. I
>>> print("Hello")
Hello

>> | i

STEP 2 Just as predicted, the word Hello appears in the
Shell as blue text, indicating output from a string.

It's fairly straightforward and doesn’t require too much explanation.
Now try:

print (“2+2")

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) 4
[GCC 4.9.1] on linux

Type “"copyright", “credits” or "license()" for more information.
>>> print(“Hello")

Hello

>>> print("2+2")

2+2

>>> |

www.bdmpublications.com

STEP 3 You can see that instead of the number 4, the
output is the 2+2 you asked to be printed to the

screen. The quotation marks are defining what's being outputted
to the IDLE Shell; to print the total of 2+2 you need to remove
the quotes:

print (2+2)

B =

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help I

Python 3.4.2 (default, Oct 19 2014, 13:31:11) | Al
[GCC 4.9.1] on linux
Type “copyright”, “credits” or “license()" for more information.

>>> print("Hello") |
Hello

>>> print("2+2")
242

>>> print(2+2)
4

>>>
>>>

STEP 4 You can continue as such, printing 2+2, 464+2343
and so on to the Shell. An easier way is to use a
variable, which is something we will cover in more depth later. For
now, enter:
a=2
b=2

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —‘l
[GCC 4.9.1] on linux

Type “copyright”, “credits” or "license()" for more information. |
>>> print("Hello")
Hello

>>> print(“2+27)

2+2 '

>>> print(2+2)
4

>>>
>>> a=2
>>> b=2
>>> |

STEP 5 What you have done here is assign the letters a
and b two values: 2 and 2. These are now variables,
which can be called upon by Python to output, add, subtract, divide
and so on for as long as their numbers stay the same. Try this:

print(a)
print (b)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.
>>> print("Hello")

Hello

>>> print("2+2") l

2+2

>>> print(2+2)
4

>>>

>>> a=2

>>> b=2

>>> print(a)

2

>>> print(b)

55> |

[

STEP 6 The output of the last step displays the current
values of both a and b individually, as you've asked

them to be printed separately. If you want to add them up, you can
use the following:

print (a+b)

This code simply takes the values of a and b, adds them together
and outputs the result.

file Edit Shell Debug Options Windows Help J

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type "copyright”, “"credits" or "license()" for more information.
>>> print(“Hello™) i

Hello

>>> print(“2+2")

2+2

>>> print(2+2)

4

>>>

>>> a=2

>>> b=2

>>> print(a)
2

»>>> print(b)
2

‘ >>> print(a+b)
4

> | |
STEP 7 You can play around with different kinds of variables
and the Print function. For example, you could

assign variables for someone’s name:

name="David”
print (name)

Python 3.4.2 Shell o T

Flle Edit Shell Debug Options Windows Help I
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
|

|

|

|

[GCC 4.9.1] on linux

Type "copyright”, "credits” or “"license()" for more information.

>>> print(“Hello™)

Hello

>>> print(“2+2") |

2+2

>>> print(2+2)

4 \

>>>

>>> a=2

>>> b=2 |

>>> print(a) |

2 |

>>> print(b)

2 |

>>> print(a+b)

4

>>> name="David" ;
|
|

>>> print(name)
David
>>>

(Your First Code

STEP 8 Now let's add a surname:

surname="Hayward”
print (surname)

You now have two variables containing a first name and a surname
and you can print them independently.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type "copyright", “credits" or "license()" for more information.
>>> name="David"

>>> print(name)

David

>>> surname="Hayward"

>>> print(surname)

Hayward

|

i
l
| |
| :

STEP 9 If we were to apply the same routine as before,
using the + symbol, the name wouldn't appear

correctly in the output in the Shell. Try it:

print (name+surname)

You need a space between the two, defining them as two separate
values and not something you mathematically play around with.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help 1

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[6CC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.
>>> name="David”

>>> print(name)
David
>>> surname="Hayward"

>>> print(surname)
Hayward

>>> print(name+surname)
DavidHayward

>5> |

|
i |

$000

STEP 10

print (name,

In Python 3 you can separate the two variables
with a space using a comma:

surname)
Alternatively, you can add the space yourself:
print (name+” “+surname)

The use of the comma is much neater, as you can see.
Congratulations, you've just taken your first steps into the wide
world of Python.

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type “copyright”, “credits” or "license()" for more information.
>>> name="David"

>>> print(name)

David

>>> surname="Hayward"

>>> print(surname)

Hayward

>>> print(name+surname)

DavidHayward

>>> print(name, surname)

David Hayward

>>> print(name+" "+surname)

David Hayward

>>> |

| =& - gy A

www.bdmpublications.com

E Hello, World>

Saving and Executing

Your Code

While working in the IDLE Shell is perfectly fine for small code snippets, it's not

designed for entering longer program listings. In this section you're going to be
introduced to the IDLE Editor, where you will be working from now on.

EDITING CODE

You will eventually reach a point where you have to move on from inputting single lines of code into the Shell. Instead, the

IDLE Editor will allow you to save and execute your Python code.

STEP 1 First, open the Python IDLE Shell and whenit's up,
click on File > New File. This will open a new window
with Untitled as its name. This is the Python IDLE Editor and within it
you can enter the code needed to create your future programs.

STEP 2 The IDLE Editor is, for all intents and purposes, a
simple text editor with Python features, colour
coding and so on; much in the same vein as Sublime. You enter

code as you would within the Shell, so taking an example from the
previous tutorial, enter:

Python 34,2 Shell
Ele Edt Shel Debug Options Windows
Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[6CC 4.9.1] on linux
Tre “copyright”, "credits” or "license()" for more information.

le Edt Format Run Options

print (*Hello everyone!”)

www.bdmpublications.com

©000

STEP 3 You can see that the same colour coding is in place
in the IDLE Editor as it is in the Shell, enabling you
to better understand what's going on with your code. However, to
execute the code you need to first save it. Press F5 and you get a
Save...Check box open.

‘ Unii
Elo £t Fomat Eun Options wndows Help
B prinecwetio)

e Ede Shell Dobug Qptions Windows el
Oct 19 2014, 13:31:11)

its® or "license()" for more information.

Source Must Be Saved
OK to Save?

e

STEP 4 Click on the OK button in the Save box and select a
destination where you'll save all your Python code.
The destination can be a dedicated folder called Python or you
can just dump it wherever you like. Remember to keep a tidy drive
though, to help you out in the future.

S T S S SR R

L4

i print(“Hello everyone!")

‘I
Save As - o x

Directory: /home/pi/Documents - ‘ @J

[7] loopl.py
[main.py
[Z] namecount.py |

B _pycache__] cake.py
3 Blue) Projects [] circle.py
&5 Greenfoot Projects || graphics.py

Python Code [7] Hello.py [*] square.py

Scratch Projects [] img.py [C] test.py

(] Addition.py [7] imgtest.py [*] wordgame.py

[4 D]
File name: print hello Save

Files of tvpe: Pvthon files (*.pv.*.oww) — | Cancel |

STEP 5 Enter a name for your code, ‘print hello’ for
example, and click on the Save button. Once the
Python code is saved it's executed and the output will be detailed in
the IDLE Shell. In this case, the words ‘Hello everyone!'.

Elo EOR Shel Debug gptions Wmdows Holp
Python 3.4.2 (default, OCt 19 2014, 13:31:11)
[6C 4,911 on Linux

Type "copyright”, "credits” or “license()" for more information.
i RESTART

Pl Frnccetio cveryoner

Sello everyona!

$8000800000000000

STEP 6

save the code and look at the output in the Shell. Sometimes things
will differ, depending on whether you've requested a separate
window, but essentially that's the process. It's the process we will
use throughout this book, unless otherwise stated.

This is how the vast majority of your Python code
will be conducted. Enter it into the Editor, hit F5,

Python 3.4.2 Shell - o x

File Edit Shell Debug Options Windows Help [‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1]) on linux
Type "copyright”, "credits" or "license()" for more information.
>>> RESTART
>>>

|

Hello everyone!
>>>

STEP 7 If you open the file location of the saved Python
code, you can see that it ends in a .py extension.
This is the default Python file name. Any code you create will be
whatever.py and any code downloaded from the many Internet
Python resource sites will be .py. Just ensure that the code is written
for Python 3.

Python Code - o x
File Edit View Bookmarks Go Tools Help
| & v 2 (8] | /home/pi/Documents/Python Code &g
! Directory Tree v |
i= @pi =

— pnnt
| [Desktop hello py

[@ Documents

+ (I BlueJ Projects
+ [Greenfoot Projects
» [0 _pycache_
<No subfolders>
% [Scratch Projects
= (¥ Downloads
+ (8 Music
+) & Pictures

(Saving and Executing Your Code E

©000

STEP 8

a=2

b=2

name="David”
surname="Hayward”
print (name, surname)
print (a+b)

Let's extend the code and enter a few examples
from the previous tutorial:

If you press F5 now you'll be asked to save the file, again, as it's been
modified from before.

| !

STEP 9 If you click the OK button, the file will be

overwritten with the new code entries, and
executed, with the output in the Shell. It's not a problem with just
these few lines but if you were to edit a larger file, overwriting can
become an issue. Instead, use File > Save As from within the Editor
to create a backup.

- 0 %

print hello.py - /home/pi/Documents/Python Code/print hello.py (3.4.2)
I File Edit Format Run Options Windows Help ‘ i

New File Ctrl+N

Open... Ctri+0 ‘

Recent Files -
I Open Module... Alt+M { |
Alt+C

Class Browser

Path Browser ‘
Save Ctrl+S ‘
Save ... Ctrl+S fsl
Save Copy As... Alt+Shift+S
|
Print Window Ctrl+P
Close Alt+F4

Exit Ctrl+Q J

STEP 10 Now create a new file. Close the Editor, and open
a new instance (File > New File from the Shell).

Enter the following and save it as hello.py:

a="Python”
b=ll is"
c="cool !”
print(a, b, c)

You will use this code in the next tutorial.

hello.py - /home/pi/Documents/Python Code/hello.py (3.4.2) - o x

|Elle Edit Format Run Qptions Windows Help |

a="Python" -
b="1s"

c="cool!"
H print(a. b, c)

www.bdmpublications.com

ﬁ Hello, World>

Executing Code from

the Commanc

Line

Although we're working from the GUI IDLE throughout this book; it's worth taking

a look at Python's command line handling. We already know there’s a command line
version of Python but it's also used to execute code.

COMMAND THE CODE

Using the code we created in the previous tutorial, the one we named hello.py, let’s see how you can run code that was made

in the GUI at the command line level.
STEP 1 Python, in Linux, comes with two possible ways of
executing code via the command line. One of the
ways is with Python 2, whilst the other uses the Python 3 libraries
and so on. First though, drop into the command line or Terminal on

your operating system.

File Edit Tabs Help

STEP 2 Just as before,
we're using a
Raspberry Pi: Windows users will
need to click the Start button and
search for CMD, then click the
Command Line returned search;

B D [:2] Filter
Best match

Command Prompt
Desktop app

Search suggestions »

L cmd - see web resuits
and macOS users can get access
to their command line by clicking
Go > Utilities > Terminal.

pel cmd‘

www.bdmpublications.com

Now you're at the command line we can start
Python. For Python 3 you need to enter the
command python3 and press Enter. This will put you into the
command line version of the Shell, with the familiar three right-
facing arrows as the cursor (>>>).

pi@raspberypi. ~

File Edit Tabs Help

From here you're able to enter the code you've
looked at previously, such as:

a=2
print (a)

You can see that it works exactly the same.

File Edit Tabs Help

<Executing Code from the Command Line m

©000

Now enter: exit() to leave the command line Python
session and return you back to the command

prompt. Enter the folder where you saved the code from the
previous tutorial and list the available files within; hopefully you
should see the hello.py file.

command line:

From within the same folder as the code you're
going to run, enter the following into the

python3 hello.py
This will execute the code we created, which to remind you is:

a="Python”

b=ll iS"
c="oool L”
printianebime)

STEP 7 Naturally, since this is Python 3 code, using the
syntax and layout that's unique to Python 3, it only

works when you use the python3 command. If you like, try the same
with Python 2 by entering:

python hello.py

pi@raspberypi: ~/Documents/Python Code = =

File Edit Tabs Help

STEP 8 The result of running Python 3 code from the
Python 2 command line is quite obvious. Whilst it
doesn’t error out in any way, due to the differences between the
way Python 3 handles the Print command over Python 2, the result
isn’t as we expected. Using Sublime for the moment, open the
hello.py file.

B C:\Users\david\Documents\Python\hello.py - Sublime Text (UNREGISTERED)

| File Edit Selection Find View Goto Tools Project Preferences Help

"
PR hello.py x \
1 a="Python”
p=Pis®
c="cool!”
print(a, b, c)

STEP 9 Since Sublime Text isn’t available for the Raspberry
Pi, you're going to temporarily leave the Pi for the
moment and use Sublime as an example that you don't necessarily
need to use the Python IDLE. With the hello.py file open, alter it to
include the following:

name=input (“*What is your name? “)
print (*Hello,”, name)

File Edit Selection Find View Goto Tools Project Preferences Help

P helio.py \

a="Python”
prin
c="cool!”
print(a, b, c)
name=input(t is

» hame)

code with:

Save the hello.py file and drop back to the
command line. Now execute the newly saved

python3 hello.py

The result will be the original Python is cool! statement, together
with the added input command asking you for your name, and
displaying it in the command window.

www.bdmpublications.com _

E Hello, World>

Numbers and Expressions

We've seen some basic mathematical expressions with Python, simple addition and the

like. Let's expand on that now and see just how powerful Python is as a calculator. You
can work within the IDLE Shell or in the Editor, whichever you like.

IT'S ALL MATHS, MAN

You can get some really impressive results with the mathematical powers of Python; as with most, if not all, programming

languages, maths is the driving force behind the code.

STEP 1 Open up the GUI version of Python 3, as mentioned
you can use either the Shell or the Editor. For the
time being, you're going to use the Shell just to warm our maths
muscle, which we believe is a small gland located at the back of the
brain (or not).

Python 3.4.2 Shell
FEile Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) =

[6CC 4.9.1] on linux
Type "copyright", “"credits" or "license()" for more information.
>>>

STEP 2 In the Shell enter the following:

2+2

STEP 3 You can use all the usual mathematical operations:
divide, multiply, brackets and so on. Practise with a

few, for example:

i./2)

6/2

2+42%*3

(1+2) + (3*4)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

L4

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type "copyright”, “credits” or "license()" for more information.
>>> 242

4

>>> 54356+34553245

34607601

>>> 99867344%27344484221

2730821012201179024

>>> 1/2

0.5

>>> 6/2

3.0 - |
>>> 2+42*%3

8

>>> (1+2)+(3*4)

15

>>> |

STEP 4 You've no doubt noticed, division produces a
decimal number. In Python these are called floats,

or floating point arithmetic. However, if you need an integer as

54356+34553245 5
opposed to a decimal answer, then you can use a double slash:
99867344*27344484221
; 2
You can see that Python can handle some quite large numbers. %3
And so on.
File Edit Shell Debug Options Windows Help ‘ TR
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al Eile Edit Shell Debug Options Windows Help m
[GCC 4.9.1] on linux
Type "copyright”, “"credits" or “license()" for more information. Python 3.4.2 (default, Oct 19 2014, 13:31:11) A
>>> 242 [GCC 4.9.1] on linux
4 Type “copyright”, "credits" or “license()" for more information.
>>> 54356+34553245 >>> 242

34607601

>>> 99867344%27344484221
2730821012201179024

>>>

|

m www.bdmpublications.com

4
>>> 54356+34553245
34607601
>>> 99867344*27344484221
2730821012201179024
>>> 1/2
0.5
>>> 6/2
3.0
>>> 242*3
>>> (1+2)+(3*4)
5
>>> 1//72
0

>>> 6//2

3
>> |

$000

STEP 5

10/3

You can also use an operation to see the remainder
left over from division. For example:

Will display 3.333333333, which is of course 3.3-recurring. If you
now enter:

10%3

This will display 1, which is the remainder left over from dividing 10
into 3.

2730821012201179024
>>> 1/2
0.5
>>> 6/2
3.0
>>> 2+2*3
8
>>> (1+42)+(3*4)
15
>>> 1//2
0
>>> 6//2
3
>>> 10/3
3.3333333333333335
3

= T B
STEP 6 Next up we have the power operator, or
exponentiation if you want to be technical. To work
out the power of something you can use a double multiplication
symbol or double-star on the keyboard:

72357 2}
AL()E L)

Essentially, it's 2x2x2 but we're sure you already know the basics
behind maths operators. This is how you would work it out in Python.

>>> 6/2

3.0

>>> 242%*3

8

>>> (142)+(3*4)
15

>>> 1772

0

>>> 6//2

3

>>> 10/3
3.3333333333333335
>>> 10%3

1
>>> 2%%3
>>> 10%*10

10000000000
>>>

STEP 7 Numbers and expressions don’t stop there. Python
has numerous built-in functions to work out sets
of numbers, absolute values, complex numbers and a host of
mathematical expressions and Pythagorean tongue-twisters. For
example, to convert a number to binary, use:

bin(3)

55> 172
0.5
>>> 6/2

3.0

>>> 2+2%3

>>> (142)+(3%4)
15

>>> 1772

>>> 6//2

3

>>> 10/3
3.3333333333333335
>>> 10%3

1

>>> 2%*3

8

>>> 10%%10
10000000000

>>> bin(3)

‘0b11*
>>> |

Numbers and Expressions

STEP 8 This will be displayed as ‘0b11’, converting the
integer into binary and adding the prefix Ob to the

front. If you want to remove the 0b prefix, then you can use:
Eormati (B DL)

The Format command converts a value, the number 3, to a
formatted representation as controlled by the format specification,
the ‘b’ part.

>>> 2¢2*3

8

>>> (1+2)+(3*4)
15

>>> 1//2

0

>>> 6//2

3

>>> 10/3
3.3333333333333335
>>> 10%3

1

>>> Zhey

8

>>> 10**10
10000000000

>>> bin(3)

‘0b11°*

>>> format(3,'b")
‘11

>>>

STEP 9 A Boolean Expression is a logical statement that will

either be true or false. We can use these to compare

data and test to see if it's equal to, less than or greater than. Try this
in a New File:

a=6 Booleantest py - /home/p
b = 7 !Eila Edit Format Run Options Window
privkll, 3 == &)

print(2; a == 7)

print(3, & 6 and b == 7) é

print(4, a == 7 and b == }) Bint(e. not o= 7 w b —5)
printis, not a2 == 7 and b == 7)

printies, a ¢ (one

print (7, a == 7 oxr

print (8, not (a == 7 and b == &))

print (9, not & == 7 and b == 6]

STEP 10 Execute the code from Step 9, and you can see a
series of True or False statements, depending on
the result of the two defining values: 6 and 7. It's an extension of
what you've looked at, and an important part of programming.

Python 3.4.2 Shell =G
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1) on linux

Type “"copyright", "credits" or "license()" for more information.

>>> RESTART

>>>
1 True
2 False
3 True
4 False
5 True
6 True
7 False
8 True
9 False
>>> |

www.bdmpublications.com

E Hello, World>

Using Comments

When writing your code, the flow, what each variable does, how the overall program

will operate and so on is all inside your head. Another programmer could follow the
code line by line but over time, it can become difficult to read.

#COMMENTS!

Programmers use a method of keeping their code readable by commenting on certain sections. If a variable is used, the
programmer comments on what it's supposed to do, for example. It's just good practise.

©0060000000 ©600060000000

STEP 1 Start by creating a new instance of the IDLE Editor STEP 3 Resave the code and execute it. You can see that the
(File > New File) and create a simple variable and output in the IDLE Shellis still the same as before,
print command: despite the extra lines being added. Simply put, the hash symbol (#)

denotes a line of text the programmer can insert to inform them,
and others, of what's going on without the user being aware.

a=10
print (“The value of A is,”, a)

Save the file and execute the code. Python 3.4.2 Shell _ o ox
File Edit Shell Debug Options Windows Help J |
‘ Comments.py - /home/pi/Documen../Python Code/Comments.py (34.2) - 0 x Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
-~ [GCC 4.9.1] on linux
Eile Edit Format Run Options Windows Help Type "copyright”, "credits” or "license()" for more information.
[>3> RESTART I
a=10 | >>>
print(“The value of A is,", a) | The value of A is, 10
>>> RESTART

| >>>
The value of A is, 10
| >>>

|
|
|
|

STEP 2 Running the code will return the line: The value of A STEP 4 Let's assume that the variable A that we've created
is, 10 into the IDLE Shell window, which is what we is the number of lives in a game. Every time the

expected. Now, add some of the types of comments you'd normally player dies, the value is decreased by 1. The programmer could

see within code: insert a routine along the lines of:

Set the start value of & to 10 a=a-1

a=10 print (*You’ve just lost a life!”)

Print the current value of A print (*You now have”, a, “lives left!”)

print (“The value of A is,”, a)

Comments.py - /home/pi/Docume..Python Code/Comments.py (34.2) - 0 x

File Edit Format Run Options Windows Help

File Edit Format Run Options Windows Help | # Set the start value of A to 10 Al
a=10

Set the start value of A to 10 Al # Print the current value of A

a=10 print(“The value of A is.”, a)

Print the current value of A a=a-1

|} print(~The value of A is,", a) print("You've just lost a life!")

print(“You now have", a, "lives left!")

m www.bdmpublications.com

STEP 5 Whilst we know that the variable A is lives, and
that the player has just lost one, a casual viewer or
someone checking the code may not know. Imagine for a moment
that the code is twenty thousand lines long, instead of just our
seven. You can see how handy comments are.

Python 3.4.2 Shell = 5]
Elle Edit Shell Debug OQptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[6CC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>> RESTART

Ld

(Using Comments

Inline comments are comments that follow a section
of code. Take our examples from above, instead of

inserting the code on a separate line, we could use:

a=10 # Set the start value of A to 10

print (*The value of A is,”, a) # Print the current
value of A

a=a-1 # Player lost a life!

print (*You’ve just lost a life!”)

print (*You now have”, a, “lives left!”) # Inform

22 . player, and display current value of A (lives)

The value of A is, 10 I

>>> RESTART = = =

>>> ’ Comr py - /nome/pi/Documents/Python Code/Comments.py (3.4.2) P - B
The value of A is, 10 Eille Edit Format Run Options Windows Help

>>> RESTART

>>>

The value of A is. 10
You've just lost a life!
You now have 9 lives left!
>>>

STEP 6

Set the start value of A to 10
a=10

Print the current value of A
print (“The value of A is,”, a)

Player lost a life!

a=a-1

Inform player,
(lives)

print (“You’ve just lost a life!”)

print (*You now have”, a, “lives left!”)

Essentially, the new code together with comments
could look like:

and display current value of A

! Fle Edt Format Run Options Windows Help l

Set the start value of A to 10 [
a=10
Print the current value of A
l print(“The value of A is.”, a)
Player lost a life!
a=a-1
Inform player, and display current value of A (lives)
print("You've just lost a life!™)
print("You now have", a, "lives left!"™)

[
STEP 7 You can use comments in different ways. For
example, Block Comments are a large section of
text that details what's going on in the code, such as telling the code
reader what variables you're planning on using:

This is the best game ever, and has been
developed by a crack squad of Python experts

who haven’t slept or washed in weeks. Despite
being very smelly, the code at least

works really well.

File Edit Format Run Qptions Windows Help ‘

a=10 # Set the start value of A to 10 Al
print(“The value of A is,”, a) # Print the current value of A
a=a-1 # Player lost a life!

\I print(“You've just lost a life!"

)
print(“You now have", a, "lives left!") # Inform player. and display current value of A (lives

STEP 9 The comment, the hash symbol, can also be used to
comment out sections of code you don’t want to be

executed in your program. For instance, if you wanted to remove
the first print statement, you would use:

print (*The value of A is,”, a)

Eile Edit Format Run Options Windows Help

Set the start value of A to 10
a=10
Print the current value of A
‘I # print("The value of A is.”, a)|
Player lost a life!
a=a-1
Inform player, and display current value of A (lives)
print(“You've just leost a life!™)
print("You now have", a, "lives left!"™)

STEP 10 You also use three single quotes to comment
out a Block Comment or multi-line section of
comments. Place them before and after the areas you want to
comment for them to work:

N

This is the best game ever, and has been developed
by a crack squad of Python experts who haven’t
slept or washed in weeks. Despite being very
smelly, the code at least works really well.

1

Flle Edt Format Run Options Windows Help J

This is the best game ever, and has been developed by a crack squad of Python experts Al
who haven't slept or washed in weeks. Despite being very smelly. the code at least
works really well.

Set the start value of A to 10

a=10

Print the current value of A

print(“The value of A is,”, a)

Player lost a life!

a=a-1

Inform player, and display current value of A (lives)
print(“You've just lost a life!™

print(“You now have", a, “lives left!")

This is the best game ever, and has been developed by a crack squad of Python experts
who havenOt slept or washed in weeks. Despite being very smelly, the code at least
works really well)|

Set the start value of A to 10
a=10

Print the current value of A
print("The value of A is.", a)
Player lost a life!

1
Inform player, and display current value of A (lives)

print("You've just lost a life!
print("You now have”, a, “"lives left!")

www.bdmpublications.com

Hello, World>

Working with Variables

We've seen some examples of variables in our Python code already but it's always

worth going through the way they operate and how Python creates and assigns certain
values to avariable.

VARIOUS VARIABLES

You'll be working with the Python 3 IDLE Shell in this tutorial. If you haven't already, open Python 3 or close down the previous

IDLE Shell to clear up any old code.

STEP 1 In some programming languages you're required
to use a dollar sign to denote a string, which is a
variable made up of multiple characters, such as a name of a person.
In Python this isn’t necessary. For example, in the Shell enter:
name="David Hayward” (or use your own name, unless you're
also called David Hayward).

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help J

STEP 3 You've seen previously that variables can be
concatenated using the plus symbol between the
variable names. In our example we can use: print (name + “:
% + title).The middle part between the quotations allows us to
add a colon and a space, as variables are connected without spaces,
so we need to add them manually.

Python 3.4.2 Shell =0 DX
File Edit Shell Debug Qptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “"copyright”, “credits" or “license()" for more information.
>>> name="David Hayward"

>>> print (name)

David Hayward

>5>

STEP 2 You can check the type of variable in use by
issuing the type () command, placing the name of
the variable inside the brackets. In our example, this would be:
type (name).Add anew stringvariable: title="Descended
from vVikings”.

Python 3.4.2 Shell - o x
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, “credits” or “license()" for more information.
>>> name="David Hayward"

>>> print (name)
David Hayward
>>> type (name)
<class 'str'>

>>> title="Descended from Vikings"
>>> |

d

m www.bdmpublications.com

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[6CC 4.9.1] on linux

Type “copyright”, “"credits” or "license()" for more information.
>>> name="David Hayward"

>>> print (name)

David Hayward

>>> type (name)

<class 'str'>

>>> title="Descended from Vikings"

>>> print (name + “: " + title)

Davxld Hayward: Descended from Vikings

>>>

™ Bi

II

[

You can also

STEP 4 an also
combine variables

File Edit Shell Debug Options Windows Help
within another variable. For D B L (MU TUCE 19720187 135813
example, to combine both name | 112¢ seopypieht”, Teredits or MlicenseO)”
y
and title variables into a new
variable we use:

>>> name="David Hayward"

>>> print (name)

David Hayward

>>> type (name)

<class ‘str'>

>>> title="Descended from Vikings"
>>> print (name + “: " + title)
David Hayward: Descended from Vikings
>>> character=name + “: " + title
>>> print (character)

David Hayward: Descended from Vikings
>>> age=44

>>> type (age)

<class "int'>

>>>

character=name + “: “ +
title

Then output the content of the
new variable as:

print (character)

Numbers are stored as different
variables:

age=44
Type (age)

Which, as we know, are integers.

STEP 5 However, you can’t combine both strings and
integer type variables in the same command, as you
would a set of similar variables. You need to either turn one into the
other or vice versa. When you do try to combine both, you get an
error message:

print (name + age)

1.4

al. "

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information.
>>> name="David Hayward"
>>> print (name)
David Hayward
>>> type (name)
<class ‘str'>
>>> title="Descended from Vikings"
>>> print (name + “: " + title)
David Hayward: Descended from Vikings
>>> character=name + “: " + title
>>> print (character)
David Hayward: Descended from Vikings
>>> age=44
>>> type (age)
<class 'int'>
>>> print (name+age)
Traceback (most recent call last):

File “<pyshell#9>", line 1, in <module>

print (name+age)

TypeError: Can't convert 'int’
>>> |

object to str implicitly

©8000800000000000

STEP 6

print
(cHlliels 7))

This is a process known as TypeCasting. The Python
codeiis:

(character + ™ is “ + str(age) + “ years

Oor you can use:

print (character, “is"“, age, “years old.”)

Notice again that in the last example, you don’t need the spaces
between the words in quotes as the commas treat each argument
to print separately.

=>> print (name + age)
Traceback (most recent call last):
File "<pyshell#18=", line 1, in <module>

print (name + age)
TypeError: Can't convert 'int' object to str implicitly
>»> print (character + " is " 4 str(age) + " years old.")
David Hayward: Descended from Vikings is 44 years old.
>»> print (character, "is", age, "years old.")
David Hayward: Descended from Vikings is 44 years old.
3>

e |
STEP 7 Another example of TypeCasting is when you ask for
input from the user, such as a name. for example,
enter:

age= input (“How old are you? “)

All data stored from the Input command is stored as a string variable.

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “"copyright”, “credits" or "license()" for more information.
>>> age= input ("How old are you? ")

How old are you? 44

>>> type(age)

<class ‘'str'>

>>> |

<Working with Variables

STEP 8 This presents a bit of a problem when you want to
work with a number that’s been inputted by the

user, as age + 10 won't work due to being a string variable and an
integer. Instead, you need to enter:

int (age) + 10

This will TypeCast the age string into an integer that can be
worked with.

Python 3.4.2 Shell = i
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type “copyright", “credits" or “license()" for more information.
>>> age= input ("How old are you? ")
How old are you? 44
>>> type(age)
<class ‘str'>
>>> age + 10
Traceback (most recent call last):
File "<pyshell#2>", line 1, in <module>
age + 10
TypeError: Can't convert 'int' object to str implicitly
>>> int(age) + 10
‘ 54
>>> |

STEP 9 The use of TypeCasting is also important when
dealing with floating point arithmetic; remember:

numbers that have a decimal point in them. For example, enter:
shirt=19.99

Now enter type (shirt) and you'll see that Python has allocated
the number as a ‘float’, because the value contains a decimal point.

=

Python 3.4.2 Shell

FEile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> shirt=19.99

>>> type(shirt)

<class 'float'>

>>> |

STEP 10 When combining integers and floats Python
usually converts the integer to a float, but should

the reverse ever be applied it's worth remembering that Python
doesn’t return the exact value. When converting a float to an
integer, Python will always round down to the nearest integer,
called truncating; in our case instead of 19.99 it becomes 19.

Python 3.4.2 Shell

Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> shirt=19.99

>>> type(shirt)

<class ‘float'>

>>> int(shirt)

19

>>> |

www.bdmpublications.com

m Hello, World>

User Input

We've seen some basic user interaction with the code from a few of the examples

earlier, so now would be a good time to focus solely on how you would get information

from the user then store and present it.

USER FRIENDLY

The type of input you want from the user will depend greatly on the type of program you're coding. For example, a game may
ask for a character’s name, whereas a database can ask for personal details.

©000

STEP 1 If it's not already, open the Python 3 IDLE Shell,

and start a New File in the Editor. Let's begin with
something really simple, enter:

print (“Hello”)

firstname=input (*What is your first name? “)
print (“Thanks."”)

surname=input (“*And what is your surname? “)

File Edit Format Run Options Windows Help J

print(“Hello")

firstname=input("what is your first name? ")
print(“Thanks.")

surname=input(“And what is your surname? ")

STEP 2 Save and execute the code, and as you already no
doubt suspected, in the IDLE Shell the program will
ask for your first name, storing it as the variable firstname, followed
by your surname; also stored in its own variable (surname).

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) a
[GCC 4.9.1] on linux
Type “copyright”, “credits" or "license()" for more information.
>>> RESTART

>>> |

Hello

what is your first name? David
Thanks.

And Iwnat 1s your surname? Hayward
>>>

m www.bdmpublications.com

©600

STEP 3

we want:

Now that we have the user’s name stored in a
couple of variables we can call them up whenever

print (“*Welcome”, firstname,
you’'re well today.”)

surname, “. I hope

File Edit Format Run Options Windows Help

print(“H o")
firstname=input(“What is your first name? ")
print(“Thanks.")

I surname=input(“And what is your surname? ")

print(“Welcome”, firstname, surname.,”. I hope you're well today.")

STEP 4 Run the code and you can see a slight issue, the
full stop after the surname follows a blank space.
To eliminate that we can add a plus sign instead of the comma in
the code:

print (*Welcome”, firstname, surname+"“.

you’re well today.”)

I hope

userinput.py - /home/pi/Documents/Python Code/userinputpy (342) - o x

File Edit Format Run Options Windows Help

print(“Hello") Al
firstname=input(“What is your first name?)

print(“Thanks.")

surname=input("And what is your surname? ")

\| print(“Welcome”, firstname, surname+"“. I hope you're well today.")

STEP 5 You don't always have to include quoted text within
the input command. For example, you can ask the

user their name, and have the input in the line below:

print (*Hello. What’s your name?”)
name=input ()

. — e———
userinput.py - /home/pi/Documents/Python Code/ust

File Edit Format Run QOptions Windows Help

print(“Hello.
name=1input()

What's your name?")

v

STEP 6 The code from the previous step is often regarded
as being a little neater than having a lengthy
amount of text in the input command, but it's not a rule that's set in
stone, so do as you like in these situations. Expanding on the code,
try this:

print (“Halt! Who goes there?”)
name=input ()

*usennput.py - /home/pi/Documents/Python Code/userinput.py (3.4.2

<Userlnput

STEP 8 What you've created here is a condition, which we
will cover soon. In short, we're using the input from
the user and measuring it against a condition. So, if the user enters
David as their name, the guard will allow them to pass unhindered.
Else, if they enter a name other than David, the guard challenges
them to a fight.

e e ——
input py - /home/pi/Documents/Python G
Gl Edit Shell Debug Qptions Windows Help Hle EdR Format Bun Qptions windows Help

Dython 3.4.2 (default. Oct 10 2014, 13:31:11) 2
16€C 4.9.11 on 1is
Type “copyright”.
>

print("Halt! Who goes there?")
Ramesinput()
name-

nu)
“credits” or “license()* for more information. David™;
RESTART rint(“Welcome, good sir. You may pass.”

Malt! who goes there? " print("I know you not. Prepare for battle
oavid

Vielcome, good sir. You may pass.

RESTART
Nzl!l Who goos thare?

onan
H 1 o you sot.. Prepare for batelar

STEP 9 Just as you learned previously, any input from a
user is automatically a string, so you need to apply a
TypeCast in order to turn it into something else. This creates some
interesting additions to the input command. For example:

Code to calculate rate and distance
print (*Input a rate and a distance”)
rate = float (input (“*Rate: “))

userinput.py - /home/pi/Documents/Python Code/usennput.py (3.4.2)

File Edit Format Run Options Windows Help

print(“Halt! Who goes there?")
Inane-input()

STEP 7 It's a good start to a text adventure game, perhaps?
Now you can expand on it and use the raw input

from the user to flesh out the game a little:

if name=="David”:
print (“Welcome, good sir.
else:
print (*I know you not.

You may pass.”)

Prepare for battle!”)
——
userinput.py - /home/pi/Documents/Python Code/userinputpy (342) - B x

File Edit Format Run Options Windows Help

print(“Halt! Who goes there?") e
name=input()

|17 name=="David“:

‘ print(“Welcome,

|‘ print("I know you not.

good sir. You may pass.")

Prepare for battle!")

File Edit Format Run Qptions Windows Help

Code to calculate rate and distance
print(“Input a rate and a distance")
| rate = float(input(“Rate: "))|

$000

STEP 10 To finalise the rate and distance code, we can add:

distance = float (input (“*Distance:
\\))

print (“Time:”, (distance / rate))

Save and execute the code and enter some numbers. Using the
float(input element, we've told Python that anything entered is a

Pchon 3.4.2 (dafaul 0ct 19 2014, 13:30:11) H
[6EC 4.9.1] on
Type <opynm

“Credits® or “license()® for more infornation. St & Pt it
RESTART distance = (loatCi ot Distance: 1)
print(T (distance / rate))
.uu Who goes there?
wid

»eh\nn good sir. You may pass.

RESTART

Haltt who goes there?
Conan
Bl i knom you not. prapare for battier
RESTAKI

nwm a rate and a distance

amm« 24
2 2.0

www.bdmpublications.com _

E Hello, World>

Creating Functions

Now that you've mastered the use of variables and user input, the next step is to tackle

functions. You've already used a few functions, such as the print command but Python

enables you to define your own functions.

FUNKY FUNCTIONS

A Function is a command that you enter into Python to do something. It's a little piece of self-contained code that takes data,

works on it and then returns the result.

STEP 1 It's not just data that a function works on. They can
do all manner of useful things in Python, such as
sort data, change items from one format to another and check the
length or type of items. Basically, a function is a short word that's
followed by brackets. For example, len(), list() or type().

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help J
Al

Python 3.4.2 (default. Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type “co
>>> len|

right”, “"credits” or “license()" for more information.

STEP 2 A function takes data, usually a variable, works on
it depending on what the function is programmed
to do and returns the end value. The data being worked on goes
inside the brackets, so if you wanted to know how many letters
are in the word antidisestablishmentarianism, then you'd enter:
len(“antidisestablishmentarianism”) and the number 28
would return.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help E ’

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al ‘
[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information. '
>>> len("antidisestablishmentarianism™)

28

[\

www.bdmpublications.com

STEP 3 You can pass variables through functions in much
the same manner. Let's assume you want the
number of letters in a person’s surname, you could use the following
code (enter the text editor for this example):

name=input (“Enter your surname: “)
count=1en (name)
print (“Your surname has"“, count,

ale)

“letters in

Press F5 and save the code to execute it.

ke L

STEP 4 Python has tens of functions built into it, far too
many to get into in the limited space available here.
However, to view the list of built-in functions available to Python 3,
navigate to www.docs.python.org/3/library/functions.html. These
are the predefined functions, but since users have created many
more, they're not the only ones available.

Python 3.4.2 Shell = =) e
File Edit Shell Debug Options Windows Help I
Python 3.4.2 (default, Oct 19 2014, 13:31:11) [~

[GCC 4.9.1] on linux

Type “copyright”, “credits" or “"license()" for more information.
>>> len("antidisestablishmentarianism™)

28

>>> RESTART

>>>

Enter your surname: Hayward

Your name has 7 letters in it.

>>> import math

>>>

L I F

STEP 5 Additional functions can be added to Python
through modules. Python has a vast range of

modules available that can cover numerous programming duties.
They add functions and can be imported as and when required. For
example, to use advanced mathematics functions enter:

import math

Once entered, you have access to all the Math module functions.

(Creating Functions

STEP 6 To use a function from a module enter the name of
the module followed by a full stop, then the name
of the function. For instance, using the Math module, since you've
justimported it into Python, you can utilise the square root function.
Todo so, enter:

math.sqrt (16)

You can see that the code is presented as module.function(data).

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help [

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A

[GCC 4.9.1] on linux

Type “"copyright", “credits" or “license()" for more information.

>>> len("antidisestablishmentarianism™)

28 |

>>> RESTART ‘
|
|
|

>>>
Enter your surname: Hayward
Your name has 7 letters in it.
>>> import math

>>>

FORGING FUNCTIONS

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A
[GCC 4.9.1] on linux

Type “copyright", “credits" or “license()" for more information.

>>> len(“antidisestablishmentarianism™)

28

>>> RESTART

>>>
Enter your surname: Hayward
Your name has 7 letters in it.
>>> import math

>>> math.sqrt(16)

4.0

There are many different functions you can import created by other Python programmers and you will undoubtedly come
across some excellent examples in the future; you can also create your own with the def command.

STEP 1

Enter:

def Hello():
print (“Hello”)

Hello()

Choose File > New File to enter the editor, let’s
create a function called Hello, that greets a user.

Press F5 to save and run the script. You can see Hello in the Shell,
type in Hello() and it returns the new function.

« fello. py - Thome/pi/Documents/i e
Fie Cdt_Shell Options Windows _ielp

| Ble goe romat gun gptons wndows belp
Ty thon 347 (@ *lello():
1 4901 print ¢

‘ Hello()

Tt Oct 19 2014, 13:31:11)

e 1o
or "license()" for more information. X
Tastan

9006 e0 0000000 sseserssseeessseesssseterssetsssssetesesenssssenes

script to read:

Let’s now expand the function to accept a
variable, the user’s name for example. Edit your

def Hello (name) :

print (“Hello”, name)
Hello (“David”)

This will now accept the variable name, otherwise it prints Hello
David. In the Shell, enter: name=(“Bob”), then: Hello(name). Your
function can now pass variables through it.

.cxw
| £be Ede Farmat Bun gptions windows bel

P et inname):
rint (Hell

Ele Edt Shell Debug Options Windows

Python 3.4.7 (default, 0T 19 2018, 13:31:11)

(6CC 4.9.1] on linux

Type “Copyright”. “credits” or “license()" for more information.
> RESTART

0", name)

HellogDavid™)

STEP 3 To modify it further, delete the Hello(“David”) line,
the last line in the script and press Ctrl+S to save
the new script. Close the Editor and create a new file (File > New
File). Enter the following:

from Hello import Hello

ello(“David”

Press F5 to save and execute the code.

test py - fhome/pi/D
Elo EdR Farmat Bun Qptions Windows Holp
Python 3.4.2 (default, Oct 19 2014, 13:31:11) T T Wello inport fello

[66C 4.9.1] on Lanux

Type "copyright”. “credits™ or "license()" for more information.
RESTART

Ede EGU shell Debug Dptions Wndows Help

Hello(“David")
|

Hello David

STEP 4 What you've just done is import the Hello function
from the saved Hello.py program and then used it

to say hello to David. This is how modules and functions work: you
import the module then use the function. Try this one, and modify
it For extra credit:

def add(a, b):

result = a + b
return result

Edt_Sheb Debug Qstions Wndows Help \I&nmuwu—-m
333 (Gefault. oo
- < information.

34063, 67

result = 3+ b
I resule

www.bdmpublications.com _

E Hello, World>

Conditions and Loops

Conditions and loops are what make a program interesting; they can be simple or rather

complex. How you use them depends greatly on what the program is trying to achieve;
they could be the number of lives left in a game or just displaying a countdown.

TRUE CONDITIONS
Keeping conditions simple to begin with makes learning to program a more enjoyable experience. Let's start then by checking
if something is TRUE, then doing something else if it isn't.
STEP 1 Let's create a new Python program that will ask STEP 3 Now you can use an if statement to check if the
the user to input a word, then check it to see if it's word_length variable is equal to four and print a
a four-letter word or not. Start with File > New File, and begin with friendly conformation if it applies to the rule:
the input variable:

word=input (*Please enter a four-letter word: “)
word=input (“Please enter a four-letter word: “) word_length=1len (word)
if word length == 4:
print (word, “is a four-letter word. Well done.”)

Python 342 Shel -ax

File Edt Shell Debug Options Windows Help \;ugasmmwmu.p
oy 343 Gatat et 5 3014 33T T e S T)) o
[t K A — J The double equal sign (==) means check if something is equal to
something else.
File Edit Format Run Options Windows Help
word=1input(“Please enter a four-letter word: ") Al
word_length=len(word)
1f word_length == 4:
print (word, "is a four-letter word. Well done.")
1 |
s |
STEP 2 Now we can create a new variable, then use the len STEP 4 The colon at the end of IF tells Python that if this
function and pass the word variable through it to statement is true do everything after the colon
get the total number of letters the user has just entered: that's indented. Next, move the cursor back to the beginning of
the Editor:
word=input (“Please enter a four-letter word: “)
word_length=len (word) word=input (“Please enter a four-letter word: “)
word_length=1len (word)
Untitled if word length == 4:
File Edit Rormat Run Options Windows Help print (word, “is a four-letter word. Well
d= Pl four-1 d: " Al "
m:d_;:f\;:;-le:‘:xr;?wr a four-letter wor 5 done.)
I else:

print (word, “isinot a four-letter word.”)

‘ ‘
| | File Edit Format Run Options Windows Help [l

word=input(“Please enter a four-letter word: *) 3

word, 1ength-1en(word)
1f word_length =
print (word, "is a four-letter word. Well done.™)
| il else:
rrint (word, "is not a four-letter word.")

www.bdmpublications.com

STEP 5 Press F5 and save the code to execute it. Enter
a four-letter word in the Shell to begin with, you
should have the returned message that it's the word is four letters.
Now press F5 again and rerun the program but this time enter a
five-letter word. The Shell will display that it's not a four-letter word.

rdgame py - /home/pi/Documents/wordgam

Ele Edt Shej Debug Qptions Windows Hep lmz-rwmmnnonmmmmb
rord. leng =
pord.

Bython 3.4 2 (default. Oct 19 2014 13:31:11)

yright*, “credits® or “license()" for more information.
RESTART

ra ceor word: word
a four-letter word. Well done.
REST

enter a four-letter mord: Frost
s not 3 four-letter word

—_—

LOOPS

<Conditions and Loops

STEP 6 Now expand the code to include another conditions.
Eventually, it could become quite complex. We've

added a condition for three-letter words:

word=input (*Please enter a four-letter word: “)
word_length=1en (word)
if word length ==

print (word, “is a four-letter word. Well
done.”)
elif word length == 3:

print (word, “is a three-letter word. Try again.”)
else:
print (word, “is not a four-letter word.”)

M ordgamepy - Momeri/D
e £oe shel Debig gptons | gae ot g gotons windows e
- o wrdr)

A loop looks quite similar to a condition but they are somewhat differentin their operation. A loop will run through the same
block of code a number of times, usually with the support of a condition.

Seesssceesessesesssssssssescssscesesssessssssesssssnnses

STEP 1 Let's start with a simple While statement. Like IF,
this will check to see if something is TRUE, then run

the indented code:

Untitled
Flle Edit Format Run Options Windows Help
x=1
hile x<10:

print (x)
x=x+1

STEP 2 The difference between if and while is when while
gets to the end of the indented code, it goes back
and checks the statement is still true. In our example x is less than
10. With each loop it prints the current value of x, then adds one to
that value. When x does eventually equal 10 it stops.

4.2 (default, Oct 19 2014, 13:31:11)
on 1inux

r]
Ede EOT Shell Debug Qptions windows Help Ede Edt Fgrmat Bun Qptions Windows el
i 10
x=x41

ght", "credits” or "license()" for more information.
RESTART

STEP 3 The For loop is another example. For is used to
loop over a range of data, usually a list stored as

variables inside square brackets. For example:

words=[“Cat”, “Dog”, “Unicorn”]

for word in words:

print (word

Ele EOt Shell Debug Options Wndows kelp |7 rte et romat fun gptions windows Help

Oct 19 2014, 13:31:11) wordg=["Cat", "Dog", "Unicorn"]

for word in words:
print (word)

on
=, “credits® or “license()" for more information.
RESTART

RESTAR

STEP 4 The For loop can also be used in the countdown
example by using the range function:

for x in range (1, 10]:

The x=x+1 partisn’t needed here because the range function
creates a list between the first and last numbers used.

= e
w (601 py - /home/pi/Documen]
Ele EGT Shell Debug Qptions Windows Help |7 B gde Fomat Bun gptions Windows telp

Python 3.4.2 (defoult, Oct 19 2014, 13:31:11) g range (1. 10):

16CC 4.9.11 on Linux print (x)

opyright™, "credits” or "license()” for more information.
RESTARI

www.bdmpublications.com

E Hello, World>

Python Modules

We've mentioned modules previously, (the Math module) but as modules are such a

large part of getting the most from Python, it's worth dedicating a little more time to
them. In this instance we're using the Windows version of Python 3.

MASTERING MODULES

Think of modules as an extension that's imported into your Python code to enhance and extend its capabilities. There are
countless modules available and as we've seen, you can even make your own.

sese ©00 $600

STEP 1 Although good, the built-in functions within Python STEP 3 The resultis an error in the IDLE Shell, as the
are limited. The use of modules, however, allows us Pygame module isn't recognised or installed in

to make more sophisticated programs. As you are aware, modules Python. To install a module we can use PIP (Pip Installs Packages).

are Python scripts that are imported, such as import math. Close down the IDLE Shell and drop into a command prompt or
Terminal session. At an elevated admin command prompt, enter:

&

File Edit Shell Debug Options Window Help pip install pygame

Python 3 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]

| Type "copyright", "credits" or "license()" for more information.
|1 >>> math

..

STEP 2 Some modules, especially on the Raspberry Pi, STEP 4 The PIP installation requires an elevated status
are included by default, the Math module being a due it installing components at different locations.
prime example. Sadly, other modules aren’t always available. Agood Windows users can search for CMD via the Start button and right-

example on non-Pi platforms is the Pygame module, which contains click the result then click Run as Administrator. Linux and Mac users
many functions to help create games. Try: import pygame. can use the Sudo command, with sudo pip install package.

S
&
File Edit Shell Debug Options Windo Helg
Python 3.6.2 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32
| Type "copyright™, "credits" or "license()" for more information.
1 > math

pygame

‘ www.bdmpublications.com

STEP 5 Close the command prompt or Terminal and
relaunch the IDLE Shell. When you now enter:
import pygame, the module will be imported into the code
without any problems. You'll find that most code downloaded or
copied from the Internet will contain a module, mainstream of
unique, these are usually the source of errors in execution due to
them being missing.

(@ Python 362 Shel - Y

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5£d33bS, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits" or "license()" for more information.

>>> in t pygame

STEP 6 The modules contain the extra code needed to
achieve a certain result within your own code, as
we've previously experimented with. For example:

import random

Brings in the code from the Random Number Generator module.
You can then use this module to create something like:

for i in range(10) :

print (random.randint (1, 25))
[@ “Untite = O
File Edit Format Run Options Window Help
import random
| for 1 in range(10):

‘ print (random.randint (1, 25))
|
|
|

STEP 7 This code, when saved and executed, will display ten
random numbers from 1 to 25. You can play around
with the code to display more or less, and from a great or lesser
range. For example:

import random

for i in range(25):

print (random.randint (1, 100))

sumper.py

Mumbes.py

<Python Modules

©00600

import random
import math

Multiple modules can be imported within your code.
To extend our example, use:

for I in renge(5) :

print (random.randint (1, 25))

print (math.pi)

[® Rnd Number.py - C:/Users/david/Documents/Python/Rnd Number.py (3 u]
File Edit Format Run Options Window Help

import random
import math

for i range (5) :
print (random.randint (1, 25))

print (math.pi)

STEP 9 The result is a string of random numbers followed
by the value of Pi as pulled from the Math module

using the print(math.pi) function. You can also pullin certain
functions from a module by using the from and import commands,
such as:

from random import randint

for i in range (5) :

princlrandint{l, 25))
File Edit Format Run Options Window Help
random t randint
r i in range(5):

print (randint (1, 25))

STEP 10 This helps create a more streamlined approach to
programming. You can also use import module*,

which will import everything defined within the named module.
However, it's often regarded as a waste of resources but it works
nonetheless. Finally, modules can be imported as aliases:

import math as m
print (m.pi)
Of course, adding comments helps to tell others what's going on.

| *Rnd Number.py - C:/Users/david/Documents/Python/Rnd Number.py (3.6.2)* - o 3

File Edit Format Run Options Window Help
ort math as m

print (m.pi)

www.bdmpublications.com

E Hello, World>

Python Errors

It goes without saying that you'll eventually come across an error in your code, where

Python declares it's not able to continue due to something being missed out, wrong or
simply unknown. Being able to identify these errors makes for a good programmer.

DEBUGGING

Errors in code are called bugs and are perfectly normal. They can often be easily rectified with a little patience. The important
thing is to keep looking, experimenting and testing. Eventually your code will be bug free.

©0060000000

STEP 1 Code isn't as fluid as the written word, no matter
how good the programming language is. Python is

certainly easier than most languages but even it is prone to some
annoying bugs. The most common are typos by the user and whilst

easy to find in simple dozen-line code, imagine having to debug
multi-thousand line code.

W
~
- R o
o o> <« <O
- N
o

(o >
) 'd
> e,
"o. 5 - ...’.

©800

STEP 2 The most common of errors is the typo, as we've
mentioned. The typos are often at the command
level: mistyping the print command for example. However, they also
occur when you have numerous variables, all of which have lengthy
names. The best advice is to simply go through the code and check
your spelling.

Python 3.4.2 Shell =X
File Edit Shell Debug Options Windows Help

©600060000000

STEP 3 Thankfully Python is helpful when it comes to
displaying error messages. When you receive an
error, in red text from the IDLE Shell, it will define the error itself
along with the line number where the error has occurred. Whilst in
the IDLE Editor this is a little daunting for lots of code; text editors
help by including line numbering.

Python 34 2 Shel
Ele EdU shel Debug ptions Windows Help
Bython 3.4.2 (default, Oct 19 2014, 13:31:11) B

16CC 4.9.11 on linux
Type “copyright”, "credits* or "license()" for more information.
»> RESTARI

draw the white background onta the surface

windanSur face . £11(MITE)
Iraceback (most recent call last):
File “/home/pi/Docunents/grophics.py®, line 03, in module>
Tghpygame. draw. e L 11pse(windonSur tace. RED. (300. 250. 40. 80). 1)
NameCrror: name 'fghpygame' i3 not defined # dran 2 green polygon onto the surface

drow seme blue lines onto the s

pygame.. draw. Line(windonst (60, 60), (120

|
|
|
‘ pygame. draw. polygon(windonsur face, GREEN, ((146. 0),
|
‘ pygame. draw. Line(windorGur face, BLUE, (120, 60). (60

pygame. draw. Line(windonurface, BLUE, (60, 120). (12|

|[# dram o b1ue circle onto the surface

|| pygame. dram. circle(mindonsur face, BLUE, (300, 50), 2!

‘ # draw a red ellipse onto the surface

Mlloygame .dran.ellipse(windowsurface, RED, (300, 250

dram the text's background rectangle onto the surt

pygame. draw. rect(mindonSurtace. RED. (textRect.lett

‘
\
o 4

STEP 4 Syntax errors are probably the second most
common errors you'll come across as a programmer.
Even if the spelling is correct, the actual command itself is wrong.
In Python 3 this often occurs when Python 2 syntaxes are applied.

The most annoying of these is the print function. In Python 3 we use
print(“words"), whereas Python2 uses print “words”.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux
Type “"copyright”, “"credits" or "license()" for more information.
>>> apples=10
>>> pirnt(apples)
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>

pirnt(apples) L
NameError: name 'pirnt' is not defined
>>> |

www.bdmpublications.com

L4

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “"copyright"”, "credits” or “"license()" for more information.
>>> print“Hello world!

SyntaxError: invalid syntax

>>>

©9000

STEP 5

print (balanced check (input ()))

Pesky brackets are also a nuisance in programming
errors, especially when you have something like:

Remember that for every ‘(' there must be an equal number of)'.

1 import sys

3y def balanced check(data):
i stack = []
characters = list(data

v for character in characters:
8v reference = {
(rr Y)Y,

‘0 3

11 e Ty’

}

if character in reference.keys():
stack.append(character)

16 v elif character in reference.values() and len(stack) > 0:
17 char = stack.pop()
if reference.get(char) != character:
return "NO"
else:

STEP 6 There are thousands of online Python resources,
code snippets and lengthy discussions across forums
on how best to achieve something. Whilst 99 per cent of it is good
code, don't always be lured into copying and pasting random code
into your editor. More often than not, it won't work and the worst
part is that you haven't learnt anything.

You have a bare except clause; i.e.,

A
try:

8 some_code()
except:

s clean_up()

The problem with a bare except is that it will catch all exceptions, including ones you really
don’t want to be ignoring (like KeyboardInterrupt and SystemExit). It would be much better if
your except block only caught the specific exception you expect, and let all others bubble up
as normal

A few other general comments on your code:
® In line 200, you have this construction:
for letter in range(len(chosen word)):
if player_guess == chosen_word[letter]:

word_guessed[letter] = player_guess

You're looping over the index variable, but also using the list element. It would be better to
write

for idx, letter in enumerate(chosen_word):
if player_guess == letter:

STEP 7 Indents are a nasty part of Python programming
that a lot of beginners fall foul of. Recall the If loop
from the Conditions and Loops section, where the colon means
everything indented following the statement is to be executed as
long as it's true? Missing the indent, or having too much of indent,
will come back with an error.

”Ene Edit Format Run Options Windows Help

word=input("Please enter a four-letter word: ")
word_length=1en(word)

if word_length == 4:

print (word, "is a four-letter word. Well done.")
else:

== > .

print (word, "is not a four-letter word.")

SyntaxError =T

o expected an indented block

[

<Python Errors

STEP 8 An excellent way to check your code step-by-step
is to use Python Tutor’s Visualise web page, found
at www.pythontutor.com/visualize.html#mode=edit. Simply
paste your code into the editor and click the Visualise Execution
button to run the code line-by-line. This helps to clear bugs and
any misunderstandings.

Test your Python
debugging skills!

20 mete et

STEP 9 Planning makes for good code. Whilst a little old
school, it's a good habit to plan what your code
will do before sitting down to type it out. List the variables that will
be used and the modules too; then write out a script for any user
interaction or outputs.

true false

STEP 10 Purely out of interest, the word debugging in
computing terms comes from Admiral Grace
Hopper, who back in the ‘40s was working on a monolithic Harvard
Mark Il electromechanical computer. According to legend Hopper
found a moth stuck in a relay, thus stopping the system from
working. Removal of the moth was hence called debugging.

www.bdmpublications.com _

m Hello, World>

Combining What
You Know So Far

We've reached the end of this section so let's take a moment to combine everything

we've looked at so far, and apply it to writing a piece of code. This code can then be
used and inserted into your own programs in future; either part of it or as a whole.

PLAYING WITH PI

For this example we're going to create a program that will calculate the value of Pi to a set number of decimal places, as
described by the user. It combines much of what we've learnt, and a little more.

STEP 1 Start by opening Python and creating a New File in
the Editor. First we need to get hold of an equation

that can accurately calculate Pi without rendering the computer’s
CPU useless for several minutes. The recommended calculation
used in such circumstances is the Chudnovsky Algorithm, you
can find more information about it at en.wikipedia.org/wiki/
Chudnovsky_algorithm.

STEP 2 You can utilise the Chudnovsky Algorithm to create
your own Python script based on the calculation.

Begin by importing some important modules and functions within
the modules:

from decimal import Decimal, getcontext
import math

This uses the decimal and getcontext functions from the Decimal
module, both of which deal with large decimal place numbers and
naturally the Math module.

STEP 3 Now you can insert the Pi calculation algorithm
part of the code. This is a version of the

Chudnovsky Algorithm:

def calc(n):
t = Decimal (0)
pi = Decimal (0)
deno = Decimal (0)
k=0
for k in range(n) :
t = (Decimal (-1) **k) * (math.factorial
(Decimal (6) *k)) * (13591409 +545140134%k)
deno = math.factorial (3*k)* (math.
factorial (k) **Decimal (3)) * (640320%** (3*k))
pi += Decimal (t) /Decimal (deno)
pi = pi * Decimal (12)/
Decimal (640320**Decimal (1.5))
pi = 1/pi
return str(pi)

Becmal. geicentert

www.bdmpublications.com

STEP 4 The previous step defines the rules that make
up the algorithm and creates the string that will
eventually display the value of Pi, according the Chudnovsky
brothers’ algorithm. You have no doubt already surmised that it
would be handy to actually output the value of Pi to the screen. To
rectify that you can add:

print (calc (1))

STEP 5 You can save and execute the code at this point if

you like. The output will print the value of Pito 27

decimal places: 3.141592653589734207668453591. Whilst pretty
impressive on its own, you want some user interaction, to ask the
user as to how many places Pi should be calculated.

STEP 6 You caninsert an input line before the Pi calculation
Def command. It needs to be an integer, as it will

otherwise default to a string. We can call it numberofdigits and use
the getcontext function:

numberofdigits = int (input (“please enter the

)

number of decimal place to calculate Pi to:
getcontext () .prec =

numberofdigits

CalcPi.py - /nome/pi/Documents/Python Code/CalcPi.py (3.4.2)
File Edtt Format Run Options Windows Help

from decimal import Decimal, getcontext
mport math

numberofdigits = int(input(“please enter the number of decimal places to calculate Pi to: *))
getcontext().prec = numberofdigits

ef calc(n):

t = Decimal(0)

pi = Decimal(0)

deno = Decimal(0)

k=0

for k in range(n):
t = (Decimal(-1)**k)*(math.factorial(Decimal(6)*k))*(13591409+545140134*k)
deno = math.factorial(3*k)*(math.factorial(k)**Decimal(3))*(640320%*(3*k))
pi += Decimal(t)/Decimal(deno)

pi = pi * Decimal(12)/Decimal(640320**Decimal(1.5))

pi = 1/pi

return str(pi)

print(calc(1))

STEP 7 You can execute the code now and it asks the user
how many decimal places they want to calculate Pi
to, outputting the result in the IDLE Shell. Try it with 1000 places
but don’t go too high or else your computer will be locked up in
calculating Pi.

©00 000000

STEP 8 Part of programming is

being able to modify code,
making it more presentable. Let's include
an element that times how long it takes our
computer to calculate the Pidecimal places
and present the information in a different
colour. For this, drop into the command line
and import the Colorama module (RPi users
already have it installed):

PI@!

it Tabs Help

pip install colorama

(Combining What You Know So Far

STEP 9 Now we need to import the Colorama module
(which will output text in different colours) along
with the Fore function (which dictates the foreground, ink, colour)
and the Time module to start a virtual stopwatch to see how long
our calculations take:

import time
import colorama
from colorama import Fore

numberofdigits = int(input(“pl ente
getcontext().prec = nmberefmgns

M cale(n):
t = Decimal(0)
| pi = Decimal(0)
deno = Decimal(0)
k=0
K in range(n):
t = (Decimal(-1)**k)*(math.factorial(Decimal(6)*k))*(13591409+545140134*k)
deno = math.factorial(3*k)*(math.factorial(k)**Decimal(3))*(640320**(3*k))
pi += Decimal(t)/Decimal(deno)
pi = pi * Decimal(12)/Decimal(640320**Decimal(1.5))
Pi - 1/pi
str(p1)

print(cale(1))

©00O008GS

STEP 10 To finish our code, we need to initialise the
Colorama module and start the time function at
the point where the calculation starts, and when it finishes. The end
result is a coloured ink displaying how long the process took (in the
Terminal or command line):

from decimal import Decimal, getcontext
import math

import time

import colorama

from colorama import Fore
colorama.init ()

numberofdigits
of decimal places to calculate Pi

getcontext () .prec numberofdigits

int (input (“please enter the number
Zes M)))

start_time = time.time()

def calc(n):

% @ | a Pythonzazshel

I' Elle Edit Shell Debug Options Windows Help

A, CalcPi.py - /home/pi \pi@raspbetrypi. ~/D.. ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) A d',f,:'z‘:l

[6CC 4.9.1] on linux time

Type “copyright”, “credits” or “license()" for more information. colorama

>>> RESTART colorama i Fore

5>
please enter the nusber of decinal places to calculate Pi to: 1000
14 3420 78298340 15706590894145498737666209401659

colorama. init()

msuam 1734746968975779816037965556627803580 1345995935 13286173176615982806223108
04419737853125305651521157470859338317744154596022745876277128465914181337399228
59535784112988088378242126794689633529216676947336619680715159349309584269265090
8018769960614706621 173442845131 75560407147230694298134

start_time = time.time()

7138101161111956856848705962570
13872723252284798186917184867353096708222303615292971732815423261495480206046405
35398750760139733285849996526642119020066783578725502635682724402886356888437352
889825068423383099057400137583277017849088913229: 36010131695950 Heno = Decimal(0)
44236412539394146530738483636665042264 154387773376017707109142428744379717832620 koo
33721044052592738923786964883764463574460244839242316267458666952279157823643188 K
34956170648852260770217962185905198741140188951968612315753706167429421120955210
45317853525104446927986692358 116127392886

>>> RESTART

t = Decimal(0)
pi = Decimal(0)

range(n):

>>>
please enter the number of decinal places to calculate Pi to:

3420 T570659089.14549873766620940165
\08066”734 9! 2861731766 108
04419737853125305651521157470859338317744154596022745876277128465914181337399228
59535784112988088378242126794689633529216676947336619680715159349309584269265090
80187699606147066217003750206017344284513142480930327868775560407147230694298134
4578746665772644498550! 47138101161111956856848705962570
13872723252284798186917184867353096708222303615292071732815423261495480206046405

11902 787 4

‘ pi = 1/pi
str(pi)

print(calc(1))

print(Fore.RED + “\nTime t

353987507601
88982506842338309905740013758327701784908891322958527973601013169595019458889349
44236412539394146530738483636665042264 1543877733760177071091424287443797 17832620
3372104 16267 9157823643188
34956170648852260770217962185905198741140188951968612315753706167429421120955210

File Edit Tabs Help

45317853525104446927986692358 116127392886
o[31m
Time taken: 5.99211573600769

Ln: 14Col: 4

Elle Edt Format Run Qptions Windows Help

Decimal, getcontext

numberofdigits = int(input(’ enter
getcontext().prec - numberofdigits

t = (Decimal(-1)**k)*(math.factorial(Decimal(6)*k))*(13591409+545140134*k)
deno = math. factor 1al(3*k)*(math. factorial(k)**Decimal(3))*(640320%* (3*K))
pi += Decimal(t)/Decimal(deno)

pi = pi * Decimal(12)/Decimal(640320**Decimal(1.5))

pi@raspberrypl

t = Decimal (0)
pi = Decimal (0)
deno = Decimal (0)
s = @
for k in range(n):
t (Decimal (-1) **k) * (math.
factorial (Decimal (6) *k)) * (13591409+545140134*k)
deno = math.factorial (3*k)* (math.
factorial(k)**Decima1(3))*(640320**(3*k))
pi += Decimal (t) /Decimal (deno)
pi = pi * Decimal (12)/
Decimal (640320**Decimal (1
pi = 1/pi
return str(pi)

5))

print (calc (1))
print (Fore.RED + “\nTime taken:”, time.time ()
start_time)

ken:”, time.time() - start_time)

ocuments/Python Code

Ln: 28[Cok: 5

www.bdmpublications.com _

Python in Focus:

Stitching Black Holes

One of the biggest scientific, engineering and space-based projects came to a head in
2019, revealing humanity's First glimpse at the universe’s most elusive object: a black

hole. But what's that got to do with Python?

Imaging a black hole is pretty difficult. The very nature of a
black hole means that nothing can escape its immense gravitational
field, even light itself. To quote the Wikipedia entry for a black hole:

“A black hole is a region of spacetime exhibiting gravitational
acceleration so strong that nothing—no particles or even
electromagnetic radiation such as light—can escape from it. The
theory of general relativity predicts that a sufficiently compact mass
can deform spacetime to form a black hole. The boundary of the
region from which no escape is possible is called the event horizon.
Although the event horizon has an enormous effect on the fate and
circumstances of an object crossing it, no locally detectable features
appear to be observed. In many ways, a black hole acts like an ideal
black body, as it reflects no light. Moreover, quantum field theory

EVENT HORIZON TELESCOPE

One of the problems regarding the imaging of such an object is
angular resolution. In Astronomy, the size of the objects in the night
sky is referred to by the amount of the sky they take up - units of
arc. An arc, or arc second, is a measurement (1/3600 of a degree)
that describes the size of an angle in degrees, designated by the
symbol °. A full circle is divided into 360° and a right-angle measures
90°. One degree can be divided into 60 arcminutes (abbreviated 60
arcmin or 60'). An arcminute can also be divided into 60 arcseconds
(abbreviated 60 arcsec or 60").

For example, looking at the moon, which is roughly 31 arcminutes,
imagine drawing a line from you to one side of the moon and
another to the opposite side of the moon, the angle between the
two lines is the angular size, or angular resolution.

The black hole at the centre of the Messier 87 galaxy, the one that
was imaged, is 55 million light years from Earth and has an angular
size of 40 microarc seconds, or one millionth of an arcsecond. So,
in order to see it, we would need a telescope with a diameter of
around 8Km, which simply isn’t possible as a single unit.

This is where the Event Horizon Telescope project comes into play.
Using a network of eight radio telescopes, scientists were able to
take images of the black hole over a period of around six months.
Critically timed, using atomic clocks, the telescopes imaged the area
of sky containing the black hole and collected the data, swapping
from one telescope array to the next as the Earth rotated.

_ www.bdmpublications.com

in curved spacetime predicts that event horizons emit Hawking
radiation, with the same spectrum as a black body of a temperature
inversely proportional to its mass. This temperature is on the order
of billionths of a kelvin for black holes of stellar mass, making it
essentially impossible to observe.”

Not that long ago a black hole was just a collection of theories

and mathematics written down on paper, speculated only by the
brightest minds of our time. However, as with most things scientific,
our understanding of the universe and our abilities to read it have
greatly improved and, with the culmination of years of ¥ o
hard work by a collaboration of observatories,
scientists and engineers, we got our first
image of a black hole.

y

S RESULTS

N
PP« *

This data was then collated across all the telescope arrays to the 'Trhe end result is, of course, the image of the black hole at the centre
tune of over a thousand hard drives, which came to an astonishing 5 of the M87 galaxy that's surrounded by a ring of burning gasses. The
Petabytes of raw data. The problem now was collating all that data resolution isn't great, as the team have since admitted, but, as they

into a workable form and presenting it as an image. also state, give it a couple of years and they'll be able to increase the

image resolution significantly.

Katie Bouman, a Ph.D. in electrical
engineering and computer science
from MIT, was pivotal in creating the
Python code that was able to stitch

all that data together and form the
eventual, historic image of a black hole.

All this is thanks to some clever Python code and some very brilliant
scientists and engineers.

Bouman used a number of Python
libraries to achieve the result, Numpy,
Scipy, Pandas, Jupyter, Matplotlib
and Astropy, plus some unique custom Python code —which can be
found on Github at https://github.com/achael/eht-imaging.

www.bdmpublications.com

o AR s 3T v

Working
with Data

L

Bl e’

S,

L7 S o

e et e ¢ SR 2

4 Mol AGWS TG SRS

Seut W AROTETY] WA b TETET

6

R

[3

Working with Data el

Data is everything; it can topple
governments, change election results,
and tell us the secrets of the universe.
Over these coming pages we look at how
you can create lists, tuples, dictionaries
and multi-dimensional lists, and then how
you can use them to forge exciting and
useful programs.

In addition, you will learn how you can
use the date and time functions, write to
Files to your system and even create
graphical user interfaces that will take
your coding skills to new levels and into
new project ideas.

Tuples

Dictionaries

Splitting and Joining Strings

Formatting Strings

Date and Time §
Opening Files !
Writing to Files

Exceptions o 0
Python Graphics 2 1"
Combining What You Know So Far

Python in Focus: Gaming

www.bdmpublications.com

Working with Data

Lists

Lists are one of the most common types of data structures you will come across in

Python. A list is simply a collection of items, or data if you prefer, that can be accessed
as a whole, or individually if wanted.

WORKING WITH LISTS

Lists are extremely handy in Python. A list can be strings, integers and also variables. You can even include functions in lists,

and lists within lists.

STEP 1 Alist is a sequence of data values called items. You
create the name of your list followed by an equals
sign, then square brackets and the items separated by commas;
note that strings use quotes:

numbers = [1, 4, 7,
mythical creatures -
“Vampire”, “Dragon”,

21598 IS 6]
[YunicornZ,
“Minotaur”]

YBalreogd)

Python 3.4.2 Shell - o x
File Edit Shell Debug Options Windows Help |]
Python 3.4.2 (default. Oct 19 2014, 13:31:11) wl |

[GCC 4.9.1] on linux

Type “copyright”, “credits” or “license()" for more information.

>>> numbers = [1, 4, 7, 21, 98, 156

>>> Imythlcal_creatures = [“Unicorn”, "Balrog", "Vampire", “Dragon”, "Minotaur"]
>>>

Once you've defined your list you can call each

STEP 2 =0 .
by referencing its name, followed by a number. Lists

start the first item entry as 0, followed by 1, 2, 3 and so on.
For example:

numbers
To call up the entire contents of the list.
numbers [3]

To call the third from zero item in the list (21 in this case).

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help :
Python 3.4.2 (default. Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux
Type “"copyright”, “credits” or “license()" for more information.
6

>>> numbers = [1, 4, 7, 21, 98, 15

>>> mythical_creatures = [“Unicorn”, “Balrog”, “Vampire“, “Dragon”, “Minotaur“]
>>> numbers

(1. 4, 7, 21, 98, 156]

>>> numbers[3]

21

>>> mythical_creatures

[*Unicorn®, “Balrog'. ‘Vampire'. ‘Dragon’, 'Minotaur']
>>> mythical_creatures[3]

'nralgon'

>>>

n www.bdmpublications.com

STEP 3 You can also access, or index, the last item in a list by
using the minus sign before the item number [-1],
or the second to last item with [-2] and so on. Trying to reference an
item that isn’t in the list, such as [10] will return an error:

numbers [-1]
mythical creatures[-4]

= _—

Python 3.4.2 Shell - o x |
Eile Edit Shell Debug Options Windows Help B
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al |

[GCC 4.9.1] on linux i
Type “copyright”, “credits" or “license()" for more information.
>>> numbers = [1, 4, 7, 21, 98, 156] |
>>> mythical_creatures = [“Unicorn”, “Balrog”, “Vampire”, "Dragon”, “Minotaur"]

i i \
1. 4. 7, 21, 98, 156) [
>>> numbers[3]
21

>>> mythical_creatures |
[*Unicorn’, “Balrog’, ‘Vampire', 'Dragon’, ‘Minotaur')
>>> mythical_creatures(3]

*Dragon’

>>> numbers(-1]

56

1
>>> numbers[-2]
98

>>> mythical_creatures[-1]
*Minotaur

>>> mythical_creatures[-4]
‘Balrog’

>>>

———e——

(== Slicing is similar to indexing but you can retrieve
multiple items in a list by separating item numbers

with a colon. For example:
numbers [1:3]

Will output the 4 and 7, being item numbers 1 and 2. Note that the
returned values don’t include the second index position (as you
would numbers[1:3] to return 4, 7 and 21).

Type “copyright”. “credits" or “license()" for more information.
>>> numbers = [1, 4, 7. 21, 98, 156]

>>> mythical_creatures = [“Unicorn”, “Balrog”, "Vampire", "Dragon”, "Minotaur")

>>> numbers

1. 4, 7, 21, 98, 156)

>>> numbers[3]
2

>>> mythical_creatures

[*Unicorn’, “Balrog’. ‘Vampire', 'Dragon’. ‘Minotaur’)
>>> mythical_creatures[3]

*Dragon’

>>> numbers[-1]

156

>>> numbers[-2]

o8

>>> mythical_creatures[-1]
‘Minotaur"

>>> mythical_creatures[-4]
*Balrog’

>>> numbers[1:3]

[4. 7]

>>> numbers[0:4]

0. 4, 7. 211

>>> numbers[3:5]

{21, 98]

>>> numbers[1:]

[4. 7, 21, 98, 156) |
> | |

STEP 5 You can update items within an existing list, remove
items and even join lists together. For example, to
join two lists you can use:
everything = numbers + mythical creatures
Then view the combined list with:

everything

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1] on linux

Type "copyright”, “"credits” or "license()" for more information.

>>> numbers = [1, 4, 7, 21, 98, 156]

>>> mythical_creatures = [“Unicorn”, “Balrog", "Vampire“, "Dragon”, "Minotaur")
>>> everything = numbers + mythical_creatures

>>> everything

[1. 4., 7, 21, 98, 156, 'Unicorn', 'Balrog'. 'Vampire', 'Dragon', ‘'Minotaur']
>5>

STEP 6 Items can be added to a list by entering:

numbers=numbers+ [201]

Or for strings:
mythical creatres=mythical creatures+[“Griffin”]
Or by using the append function:

mythical creatures.append(“Nessie”)
numbers . append (278)

>>> numbers = [1, 4, 7, 21, 98, 156]

>>> mythical creatures = ["Unicorn", "Balrog", "Vampire", "Dragon”, "Minotaur"]
>>> numbers

[1. 4. 7, 21, 98, 156]

>>> mythical_creatures

['Unicorn’, 'Balrog', "Vampire', 'Dragon’, 'Minotaur']

>>> numbers=numbers+[201]

>>> numbers

[1. 4, 7, 21, 98, 156, 201])

>>> mythical_creatures=mythical_creatures+["Griffin"]

>>> mythical_creatures

['Unicorn', 'Balrog', 'Vampire', 'Dragon’', 'Minotaur', 'Griffin']
>>> mythical_creatures.append(“lessie”)

>>> mythical_creatures

[‘Unicorn', *Balrog', ‘Vampire', 'Dragon’, ‘Minotaur’, 'Griffin', ‘Nessie’]
>>> numbers.append(278)

>>> numbers

[1. 4, 7, 21, 98, 156, 201, 278]

>>> |

$60000000000000000000006000000000000000000000000000000800000000000

STEP 7 Removal of items can be done in two ways. The first
is by the item number:

del numbers[7]
Alternatively, by item name:
mythical creatures.remove (“Nessie”)

>>> mythical_creatures = ["Unicorn”, "Balrog”, "Vampire”, "Dragon”, "Minotaur”]
>>> numbers

[1. 4, 7, 21, 98, 156]

>>> mythical_creatures

['Unicorn’, ‘Balrog’, 'Vampire', 'Dragon’', 'Minotaur']

>>> numbers=numbers+[201)

>>> numbers

(1. 4, 7, 21, 98, 156, 201)

>>> mythical_creatures=mythical_creatures+["Griffin”]

>>> mythical_creatures

['Unicorn', 'Balrog', 'Vampire', 'Dragon’, 'Minotaur’, *Griffin']
>>> mythical_creatures.append(“lessie”)

>>> mythical_creatures

['Unicorn', ‘Balrog', ‘'Vampire', 'Dragon‘'., ‘Minotaur’, 'Griffin', ‘Nessie')
>>> numbers.append(278)

>>> numbers

[1. 4, 7, 21, 98, 156, 201, 278]

>>> del numbers(7)

>>> numbers

(1. 4, 7, 21, 98, 156, 201)

>>> mythical_creatures.remove(“llessie”)

>>> mythical_creatures

['Unlicorn'. ‘Balrog', 'Vampire', 'Dragon’, 'Minotaur', 'Griffin']
>>>

@

©000

STEP 8 You can view what can be done with lists by entering
dir(list) into the Shell. The output is the available
functions, for example, insert and pop are used to add and remove
items at certain positions. To insert the number 62 at item index 4:
numbers.insert (4, 62)

To remove it:

numbers . pop (4)

Type ‘copyrignt”, “Credits” or "liicense()” Tor more intormation.
>>> dir(list)

‘__contains__', *__delattr__', '__delitem__', °"_ dir__
', '_ge_ ', '__getattribute__', '__getitem__'

el o, v insr . . Emer 0, 7 de °

—he__°, '_new_°, '_reduce__', '__reduce_e

reversed__", '__rmul__', '__setattr__', '__setitem__', '_s

. '_subclasshook__', ‘append', ‘clear', ‘copy'. 'count', ‘ex

insert’, 'pop’., 'remove’, ‘reverse’', 'sort’']

>>> numbers = [1, 4, 7, 21, 98, 156]

>>> numbers

(1. 4, 7, 21, 98, 156]

>>> numbers. insert(4, 62)

>>> numbers

[1. 4, 7, 21, 62, 98, 156]

>>> numbers.pop(4)

>>> numbers
(1. 4, 7, 21, 98, 156]

(S |

STEP 9 You also use the list function to break a string down
into its components. For example:
LS ti(@Davddd)
Breaks the name David into ‘D', ‘@', ‘v, ‘i', ‘d". This can then be passed
to a new list:

name=1list (“*David Hayward”)

name
age=[44]
user = name + age
user
;yth:n 3.4.2.(:2fau'1t7‘0ct 19 2014, I;:B"I:H) JJ'

[6CC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information.
>>> list("David™)

B 8, ., iV, e

>>> name=list("David Hayward")

>>> name

[o* b ST AN R LR T T G L

P T A
>>> age=[44]
>>> user = name + age
>>> user
1D, *a', v, tit, d', . CH', fat, tyt. Cw, fart, rt, d, 44)

i1 i

STEP 10 Based on that, you can create a program to store
someone’s name and age as a list:
name=input (“What’s your name? “)
lname=1ist (name)

age=int (input (“*How old are you: “))
lage=[agel

user = lname + lage

The combined name and age list is called user, which can be called
by entering user into the Shell. Experiment and see what you can do.

Python 3.4.2 Shel
File Edit Shel Debug Options Windows Help
Python 3.4.2 (default. Oct 19 2014, 13:31:11)

(6€C 4.9.1] on linux ame).
Type "Copyright”, “credits* or “license()* for more information. age=int(input(“Hom old are you: "))
s RESTART lage=(age)
what's your name? Conan of Cimmeria user = lname + lagd
How old are you: 44
>>> user
i i Ol TR PR L SO T LR T S R T
‘at, a4]

www.bdmpublications.com _

Working with Data

Tuples

Tuples are very much identical to lists. However, where lists can be updated, deleted or

changed in some way, a tuple remains a constant. This is called immutable and they're
perfect for storing fixed data items.

THE IMMUTABLE TUPLE

Reasons for having tuples vary depending on what the program is intended to do. Normally, a tuple is reserved for something
special but they're also used for example, in an adventure game, where non-playing character names are stored.

STEP 1 Atuple is created the same way as a list but in this
instance you use curved brackets instead of square

brackets. For example:

months=(*January”, “February”, “March”, “April”,

STEP 3 You can create grouped tuples into lists that contain
multiple sets of data. For instance, here is a tuple
called NPC (Non-Playable Characters) containing the character name
and their combat rating for an adventure game:

“May”, “June”) NPC=[(“Conan”, 100), (“Belit”, 80), (“Valeria”,
months 95)1
Python 3.4.2 Shell -8 x Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help J File Edit Shell Debug Qptions Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) = Python 3.4.2 (default, Oct 19 2014, 13:31:11) =

[6CC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information.

>>> months=("January”, “February”, "March”, "April", "May", "June")
>>> months

('Jalnuary', ‘February’. 'March®. 'April®, ‘May', ‘June')

>>>

J

range, i.e.:

Just as with lists, the items within a named tuple can
be indexed according to their position in the data

months [0]
months [5]

However, any attempt at deleting or adding to the tuple will result
inan errorin the Shell.

Python 3.4.2 Shell - 0 %
File Edit Shell Debug Options Windows Help I
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux
Type "copyright”, "credits" or "license()" for more information.
>>> months=("January”, “February”, “March", “April®, "May", “June")
>>> months
(*January', ‘February‘, 'March', 'April', ‘May', 'June') 4

>>> months[0]
*January’
>>> months[5S]
June
>>> months.append(“July")
Traceback (most recent call last):
File "<pyshell#4>", line 1, in <module>
months.append(“July"”)
AttrllbuteError: "tuple’ object has no attribute 'append’
>>>

-

m www.bdmpublications.com

[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> INPC=[("(DHSH",|00), ("Belit”, 80), ("valeria“, 95)]

>>>

STEP 4 Each of these data items can be accessed as a
whole by entering NPC into the Shell; or they can be

indexed according to their position NPC[0]. You can also index the
individual tuples within the NPC list:

NPC[0] [1]
Will display 100.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1] on linux |
Type "copyright”, “"credits" or "license()" for more information.
>>> NPC=[("Conan", 100), (“Belit", 80), ("Valeria", 95)]

>>> NPC

[(*Conan’, 100), ('Belit', 80), ('valeria', 95)] N
>>> NPC[0]
('Conan’, 100)
>>> NPC[0][1]
100

>>>

STEP 5 It's worth noting that when referencing multiple
tuples within a list, the indexing is slightly different

from the norm. You would expect the 95 combat rating of the
character Valeria to be NPC[4][5], but it's not. It's actually:

NPC[2] [1]

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, “credits" or "license()" for more information.
>>> NPC=[("Conan”, 100), ("Belit”, 80), (“"valeria“, 95)]

>>> NPC[2][1]

95

>>> |

1.4

| |

i

STEP 6 This means of course that the indexing follows thus:

0 i,
0, @ 2

0, 1 2, 0
1L 20
il (0]

Which as you can imagine, gets a little confusing when you've got a
lot of tuple data to deal with.

Type “"copyright”, "credits” or "license()" for more information.
>>> NPC=[("Conan”, 100), ("Belit", 80). ("Valeria”, 95)]

>>> NPC[0] y
(*Conan’, 100) L
>>> NPC[0][0]

‘Conan’

>>> NPC[0][1]
100

>>> NPC[1]
('Belit*, 80)
>>> NPC[1][0]
‘Belit’

>>> NPC[1][1]
80

>>> NPC[2]
('valeria', 95)

>>> NPC[2][0]
‘Valeria*

>>> NPC[2][1]
95

STEP 7 Tuples though utilise a feature called unpacking,
where the data items stored within a tuple are
assigned variables. First create the tuple with two items (name and
combat rating):

NPC= (“Conan”, 100)

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help \

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1]) on linux

Type "copyright”, "credits” or "license()" for more information.
>>> NPC=(“Conan®, 100)

>>> |

Ca

STEP 8

(name, combat_rating)=NPC

Now unpack the tuple into two
corresponding variables:

You can now check the values by entering name and combat_rating.

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help 1

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1) on linux
Type "copyright", “"credits" or "license()" for more information.

>>> NPC=("Conan“, 100)

>>> (name, combat_rating)=NPC
>>> name

‘Conan’

>>> combat_rating

100

>>>

: E

STEP 9 Remember, as with lists, you can also index tuples
using negative numbers which count backwards

from the end of the data list. For our example, using the tuple with
multiple data items, you would reference the Valeria character with:

NPC [2] [-0]

Python 3.4.2 Shell - 0 x
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type "copyright", “credits" or "license()" for more information.
>>> NPC=[("Conan", 100), ("Belit", 80), ("valeria", 95)]

>>> NPC[2][-0]

‘Valeria®

>>> |

STEP 10 You can use the max and min functions to find the
highest and lowest values of a tuple composed of

numbers. For example:

numbers=(i0SIE2 3 4R 09 3P 6 S 61 9]

The numbers can be integers and floats. To output the highest and
lowest, use:

print (max (numbers))
print (min (numbers))

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) A s

[6CC 4.9.1] on linux

Type "copyright", “credits" or “license()" for more information.
>>> numbers=(10.3, 23, 45.2, 109.3, 6.1, 56.7, 99)

>>> print(max(numbers))

109.3 1
>>> print(min(numbers))
6.1

>>> |

www.bdmpublications.com

Working with Data>

Dictionaries

Lists are extremely useful but dictionaries in Python are by far the more technical way

of dealing with data items. They can be tricky to get to grips with at first but you'll soon
be able to apply them to your own code.

KEY PAIRS

A dictionary is like a list but instead each data item comes as a pair, these are known as Key and Value. The Key part must be
unique and can either be a number or string whereas the Value can be any data item you like.

STEP 1 Let's say you want to create a phonebook in Python.
You would create the dictionary name and enter
the data in curly brackets, separating the key and value by a colon
Key:Value. For example:

phonebook:{ “Emma”: 1234, “Daniel”: 3456, “Hannah”:
6789}

Python 3.4.2 Shell = IS
Elle Edit Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> rhenebook=("£mma': 1234, "Daniel”: 3456, “"Hannah": 6789}

>>>

STEP 2 Just as with most lists, tuples and so on, strings
need be enclosed in quotes (single or double),
whilst integers can be left open. Remember that the value can be
either a string or an integer, you just need to enclose the relevant
one in quotes:

phonebook2={“David”: “0987 654 321"}

Python 3.4.2 Shell -1
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> phonebook={ "Emma”: 1234, "Daniel”: 3456, "Hannah": 6789}
>>> rhonebookh("Davm": "0987 654 321%)

>>>

m www.bdmpublications.com

STEP 3 As with lists and tuples, you can check the contents
of a dictionary by giving the dictionary a name:
phonebook, in this example. This will display the data items you've
entered in a similar fashion to a list, which you're no doubt familiar
with by now.

Python 3.4.2 Shell S (2
File Edit Shell Debug Options Windows Help]

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1) on linux

Type “"copyright", “"credits” or "license()" for more information.
>>> phonebook={“Emma“: 1234, "Daniel”: 3456, “"Hannah": 6789}

>>> phonebook2={"David": "0987 654 321"}
>>> phonebook
{'Hannah': 6789, 'Emma':

1234, 'Daniel': 3456}
>>>

(gy==0/8 The benefit of using a dictionary is that you
can enter the key to index the value. Using the

phonebook example from the previous steps, you can enter:
phonebook [“Emma”]

phonebook [“Hannah”]

Python 3.4.2 Shell - o x
File Edit Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) &
[6CC 4.9.1] on linux

Type “copyright”, "credits" or "license()" for more information.
>>> phonebook={"Emma": 1234, "Daniel": 3456, "Hannah": 6789}
>>> phonebook2={"David": "0987 654 321"}

>>> phonebook

{'Hannah': 6789, 'Emma’': 1234, 'Daniel': 3456}

>>> phonebook [“Emma"]

1234
>>> phonebook["Hannah"]
6789

>>>

STEP 5

value items like:

Adding to a dictionary is easy too. You can include
a new data item entry by adding the new key and

phonebook [*David”] = “0987 654 321"

phonebook

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) |-
[GCC 4.9.1] on linux

Type “"copyright", "credits" or "license()" for more information.
>>> phonebook={ "Emma”: 1234, “Daniel": 3456, "Hannah": 6789}
>>> phonebook2={"David": "0987 654 321"}

>>> phonebook

{'Hannah': 6789, 'Emma': 1234, 'Daniel’: 3456}

>>> phonebook[“Emma™]

1234

>>> phonebook[“Hannah"]
6789

>>> phonebook(“David"] = "0987 654 321"

>>> phonebook

('Hainnah': 6789, 'Emma’: 1234, 'David’': '0987 654 321", 'Daniel’: 3456}
>>>

STEP 6 You can also remove items from a dictionary by
issuing the del command followed by the item'’s
key; the value will be removed as well, since both work as a pair of
data items:

del phonebook [“David”]

Python 3.4.2 Shell =B %
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) [
[GCC 4.9.1] on linux

Type “"copyright”, “credits" or “license()" for more information.
>>> phonebook={ "Emma": 1234, "Daniel": 3456, "Hannah": 6789}

>>> phonebook2={"David": "0987 654 321"}
>>> phonebook

{'Hannah’: 6789, 'Emma’: 1234, 'Daniel':
>>> phonebook[“Emma“]

1234

3456}

>>> phonebook[“Hannah"]
6789

>>> phonebook[“David”] = "0987 654 321"
>>> phonebook

{'Hannah': 6789, 'Emma’: 1234, 'David':
>>> del phonebook["David”]

>>> phonebook

{'Hannah’: 6789, 'Emma‘’: 1234, 'Daniel’:
>>> |

'0987 654 321", 'Daniel’: 3456}

3456}

STEP 7 Taking this a step further, how about creating a
piece of code that will ask the user for the dictionary
key and value items? Create a new Editor instance and start by
coding in a new, blank dictionary:

phonebook={ }

Python 3.4.2 Shel - ox
Eile Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

| [6CC 4.9.1] on Linux
Type “copyright”, “credits" or “license()" for more information.
>>>

Fle Edit Format Run
phonebook={}

(Dictionaries

STEP 8 Next, you need to define the user inputs and
variables: one for the person’s name, the other
for their phone number (let's keep it simple to avoid lengthy
Python code):

name=input (“Enter name: “)

number=int (input (“*Enter phone number: “))

Dictin.py - /nome/pi/Documents/Python Code/Dictin.py (3.4.2)
File Edit Format Run Options Windows Help

>

phonebook={}

name=1input(“Enter name: ")
number=int(input(“Enter phone number: "))

I
STEP 9 Note we've kept the number as an integer instead
of a string, even though the value can be both
an integer or a string. Now you need to add the user’s inputted

variables to the newly created blank dictionary. Using the same
process as in Step 5, you can enter:

phonebook [name] = number

D p e/pi/Do
File Edit Format Run Options Windows Help
phonebook={} [~

name=input(“Enter name:)
number=int(input("Enter phone number: "))

rhonebook [name] = number

STEP 10 Now when you save and execute the code, Python
will ask for a name and a number. It will then insert
those entries into the phonebook dictionary, which you can test by
entering into the Shell:

phonebook
phonebook [“*David”]

If the number needs to contain spaces you need to make it a string,
so remove the int part of the input.

*Dictin.py - /home/pi/Documents/Pyt
Eile Edt Fgrmat Bun Qptions Windows Help
Phonebook=()

Python 342 Shel - ox
Ele Edt Shel Debug Qotions Windows Help

Python 2.4,2 (default, Oct 19 2014, 13:31:11) al
[6€C 4.9.1) on linux

Type “copyright”. “credits” or "license()" for more information.

> RESTART

namesinput(“Enter name: “)
"Enter phone nusber: *)

Enter name: David phonebook{name) = (number]
Enter phone number: 09876

> book

'Davad’: 9876)

353 phonebook[“David"]

9876

>

RESTART

Enter name:

RESTART
Enter name: Bob

Enter phone nusber: 0987 654 3321 3344
3> book

{*Bob’: ['0987 654 3321 3344'])

www.bdmpublications.com _

E Working with Data>

Splitting anc
Joining Strir

gs

When dealing with data in Python, especially from a user’s input, you will undoubtedly

come across long sets of strings. A useful skill to learn in Python programming is being
able to split those long strings for better readability.

STRING THEORIES

You've already looked at some list functions, using .insert, .remove, and .pop but there are also functions that can be applied

to strings.

STEP 1 The main tool in the string function arsenal is .split().
With it you're able to split apart a string of data,

based on the argument within the brackets. For example, here's a
string with three items, each separated by a space:

text="Daniel Hannah Emma”

Python 3.4.2 Shell - o x
Eile Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) al |
[GCC 4.9.1] on linux

Type “"copyright", “"credits" or "license()" for more information.
>>> text="Daniel Hannah Emma"

>>>

- -

|

$000

STEP 2

names=text.split (* “)

Now let's turn the string into a list and split the
content accordingly:

Then enter the name of the new list, names, to see the three items.

Python 3.4.2 Shell = (=] b3 ‘;
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) — |
[GCC 4.9.1] on linux |
Type “"copyright”, "credits" or "license()" for more information. |
>>> text="Daniel Hannah Emma" !

>>> names=text.split(" ")
>>> names

['Daniel'., ‘'Hannah', 'Emma‘]
>>>

L =

i

www.bdmpublications.com

$000

STEP 3 Note that the text.split part has the brackets,

quotes, then a space followed by closing quotes
and brackets. The space is the separator, indicating that each list
item entry is separated by a space. Likewise, CSV (Comma Separated
Value) content has a comma, so you'd use:

text="January, February,March,April, May, June”
months=text.split("“,”)

months

Python 3.4.2 Shell = (03 I
File Edit Shell Debug Options Windows Help “
Python 3.4.2 (default, Oct 19 2014, 13:31:11) [
[GCC 4.9.1] on linux |
Type “copyright”, “credits" or “license()" for more information.
>>> text="January,February,March,April,May,June”
>>> months=text.split(“.")
>>> months

[*January', 'February', ‘March', 'April', 'May’
>>> |
>>>

$000

STEP 4

name=1list (“David”)
name

. "June')

You've previously seen how you can split a string
into individual letters as a list, using a name:

Yo g

The returned value is ‘D, ‘@', V', ‘7', ‘'d’. Whilst it may seem a little
useless under ordinary circumstances, it could be handy for creating
a spelling game for example.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) o
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> name=list("David")

[i0% A W d %) A

STEP 5 The opposite of the .split function is .join, where
you will have separate items in a string and can join
them all together to form a word or just a combination of items,

depending on the program you're writing. For instance:

alphabet:”” . join([“a" , npn . nan , ngr " "en])
alphabet

This will display ‘abcde’ in the Shell.

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[GCC 4.9.1] on linux

Type “copyright”, “"credits”
>>> alphabet= in(["a"."b
>>> alphabet

*abcde’

>>> 3

| I

cense()” for more information.
“d”,"e"])

STEP 6 You can therefore apply .join to the separated name
you made in Step 4, combining the letters again to
form the name:

name="".join (name)
name

We've joined the string back together, and retained the list called
name, passing it through the .join function.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default. Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type “copyright", "credits” or "license()" for more information.

>>> name=list(“David”)

>>> name

'R 8% "V i Ya]

>>> name="".join(name)

>>> name

‘David*

>>> |

||

$600000000000000000000060000000000000000000000000000008600000000000

STEP 7 A good example of using the .join function is when
you have a list of words you want to combine into a

sentence:

list=[“Conan®, “raiged”, “his”, “mighty”, “sword”,
“and”, “struck”, “the”, “demon”]

Eext=% * Jein{list)

text

Note the space between the quotes before the .join function (where
there were no quotes in Step 6's .join).

<Splitting and Joining Strings

STEP 8 As with the .split function, the separator doesn’'t
have to be a space, it can also be a comma, a full
stop, a hyphen or whatever you like:
colours=["Red”, “Green”, “Blue”]

eol=" 7 . join{eoclours)
col

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) E
[6CC 4.9.1] on linux
Type "copyright”, “credits” or "license()" for more information.

>>> list=["Conan”, “raised”, "his", “mighty", "sword”, “and", "struck", "the", “demon"]
>>> text=" ".join(list)
>>> text

*Conan raised his mighty sword and struck the demon’
>>> colours=[“Red", “Green", “Blue"]

>>> col=",". join(colours)

>>> co

"Red,Green,Blue"

>>>

STEP 9 There's some interesting functions you apply to a
string, such as .capitalize and .title. For example:
title="conan the cimmerian”

title.capitalize ()
title.title()

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help l

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.

>>> title="conan the cimmerian™

>>> title.capitalize()

'Conan the cimmerian®

>>> title.title()
"Conan The Cimmerian’
>>> |

$600

(55205 [0 You can also use logic operators on strings,
with the ‘in” and ‘not in’ functions. These enable
you to check if a string contains (or does not contain) a sequence
of characters:

message="Have a nice day”
“nice” in message

"bad” not in message
“day” not in message
“night” in message

Python 3.4.2 Shell Python 3.4.2 Shell - o x
Eile Edit Shell Debug Qptions Windows Help File Edit Shell Debug Options Windows Help I.
Python 3.4.2 (default, Oct 19 2014, 13:31:11 2 ©31: a
T4CC 4.5 11 on Timux . 2 Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
Type "copyright", "credits" or "license()" for more information. [GCC 4.9.1] on linux ‘
>>> list=["Conan”, “raised”, “his", "mighty”. “sword", "and", “struck", “the". “demon") Type “copyright", “credits” or “license()" for more information. i
o5 ot nAoinCiss) >>> message="Have a nice day”
“Conan raised his mighty sword and struck the demon’ >>> “nice” 1n message
> | True |
>>> “bad” not in message |
| True ‘.
>>> “day” not in message
False |
>>> “night” in message
False
>>>

www.bdmpublications.com

Working with Data

Formatting Strings

When you work with data, creating lists, dictionaries and objects you may often want

to print out the results. Merging strings with data is easy especially with Python 3, as
earlier versions of Python tended to complicate matters.

STRING FORMATTING

Since Python 3, string formatting has become a much neater process, using the .format Function combined with curly brackets.
It's a more logical and better formed approach than previous versions.

$000

The basic formatting in Python is to call each
variable into the string using the curly brackets:

STEP 1

name="Conan”
print (“The barbarian hero of the Hyborian Age is:
{}”.format (name))

Python 3.4.2 Shell ST

File Edit Shell Debug QOptions Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) al |
[GCC 4.9.1] on linux B
Type "copyright”, "credits” or "license()" for more information.

>>> name="Conan"

>>> print(“The barbarian hero of the Hyborian Age is: {}".format(name))
The Il)arbarlan hero of the Hyborian Age is: Conan

>>>

_ ~ |
STEP 2 Remember to close the print function with two sets
of brackets, as you've encased the variable in one,
and the print function in another. You can include multiple cases of
string formatting in a single print function:

name="Conan”

place="Cimmeria”

print (*{} hailed from the North, in a cold land
known as {}”.format (name, place))

Python 3.4.2 Shell - o x

Elle Edit Shell Debug Options Windows Help ‘q
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[GCC 4.9.1] on linux
Type “"copyright”, "credits” or "license()" for more information. l
>>> name="Conan"

>>> place="Cimmeria”

>>> print(“{} hailed from the North, in a cold land known as {}".format(name, place))
(onaln hailed from the North, in a cold land known as Cimmeria “
>>>

|

www.bdmpublications.com

©600060000000

Sy R Youcan of course also include integers into the mix:

number=10000
print (“{} of {} was a skilled mercenary,
and thief too. He once stole {} gold from a
merchant.” .format (name, place, number))

Python 3.4.2 Shell
Fle Edt Shell Debug Qptions Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[6CC 4.9.1] on linux I
Type "copyright”, "credits" or "license()" for more information.

>>> name="Conan"

>>> place="Cinmeria”

>>> print(“{} hailed from the North., in a cold land known as {}".format(name, place))
Conan hailed from the North, in a cold land knomn as Cinmeria

>>> number=10000

>>> print("{} of {} was a
lace, number))

(nnzln of Cimmeria was a skilled mercenary, and theif too. He once stole 10000 gold from a merchant.
>>

skilled mercenary, and theif too. He once stole () gold from a merchant.”.format(name. p

STEP 4 There are many different ways to apply string
formatting, some are quite simple, as we've shown
you here; others can be significantly more complex. It all depends
on what you want from your program. A good place to reference
frequently regarding string formatting is the Python Docs webpage,
found at www.docs.python.org/3.1/library/string.html. Here, you
will find tons of help.

ac @ 48+ a00 8=

s T——
7.1.3. Format String Syntax

The s s matrd a1

epiacemen oo
s e, 3 o escaped by douting (403 1)

Tho gramma o reiacement o 5 fodows

(Changed i version 1. The ostionlargument speciirs can b o, 01 11 & SQUVION10 1) (31
Some sinci emat s examcies

sing, i

Thvee converson 13 e cusent supponied. 1 W Ca i) 00 1 Vel 1 WHE S ey B0 14" Whh €BlS s

STEP 5 Interestingly you can reference a list using the string
formatting function. You need to place an asterisk in

front of the list name:

numbers=1, 3, 45, 567546, 3425346345
print (“Some numbers: {}, {}, {}, {}, {}”.
format (*numbers))

2 P
Python 3.4.2 Shell -3 X

Ele Edt Shell Debug Options Windows Help]G

Python 3.4.2 (default, Oct 19 2014, 13:31:11) _J'

[6CC 4.9.1] on linux !
Type "copyright”, "credits” or "license()" for more information.
>>> numbers=1, 3, 45, 567546, 3425346345

>>> print("Some numbers: {}, {}. {}. {}. {}".format(*numbers))
Some numbers: 1, 3, 45, 567546, 3425346345

>>> »

|

STEP 6 With indexing in lists, the same applies to calling a
list using string formatting. You can index each item

according to its position (from 0 to however many are present):

numbers=1, 4, 7, 9
print (*More numbers: {3}, {0}, {2},
{1}.”.format (*numbers))

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help

(Formatting Strings

STEP 8

name=input (“What’s your name? “)
print (“Hello {}.”.format (name)

- T
testnames py - Mome/pitestnames.py (3.4.2)
fle gdR_shel Qebug gptone windows e [le Lot fomet fun Qptions Windows Liep
your nme?)

Python 3.4.2 (default, Oct 19 2014, 13:31:11) | names i
prant(e lo

You can also print out the content of a user’s input
in the same fashion:

166C 4.921] on Tinux
Type "copyright”. "credits” or "license()" for more information.
B RESTART

your namc? David I
i

STEP 9

You can extend this simple code example to display
the first letter in a person’s entered name:

name=input (“What’s your name? “)

print (“Hello {}.”.format (name))

lname=1list (name)

print (“The first letter of your name is a {0}”.
format (*1name))

Ele Edt Shel Debug Qptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) [
[6CC 4.9.1] on linux

Type “copyright", "credits" or "license()" for more information. .
>>> numbers=1, 4, 7,

>>> print(“More numbers: {3}, {0}.
More numbers: 9, 1, 7, 4.

>>> |

{2}. {1}.".format(*numbers))

I

STEP 7 And as you probably suspect, you can mix strings
and integersin a single list to be called in the

.format function:

characters=[“Conan”,
201
print (“{0} is {3} years old. Whereas {1} is {4}
years old.”.format (*characters))

SBelit”, “Valeria”, 18, 27,

Python 3.4.2 Shell
Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.

>>> characters=["Conan”, “Belit”, “Valeria®”, 19, 27, 20]

>>> print ("{0} is {3} years old. Whereas {1} is {4} years old.".format(*characters))
Conan is 19 years old. Whereas Belit is 27 years old.

>>>

Bython 3.4.2 (default, Oct 19 2014, 13:31:11)
[66€ 4.3.1) on Linu
T

yDe “copyright”. "credits® or “license()" for more information.
2 RESTART

s your name? David
Hollo 0avid.

RESTART

STEP 10 You can also call upon a pair of lists and reference
them individually within the same print function.

Looking back the code from Step 7, you can alter it with:

names=[“Conan”, “Belit”,
ages=[25, 21, 22]

“Valeria”]

Creating two lists. Now you can call each list, and individual items:

print (*{0[0]} is {1[0]} years old. Whereas {0[1]}
is {1[1]} years old.”.format (names, ages))

Python 3.4.2 Shell - o x

File Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) —‘F'

[6CC 4.9.1] on linux

Type "copyright”, “"credits” or "license()" for more information.

>>> names=["Conan”, "Belit", "Valeria“)

>>> ages=[25, 21, 22]

>>> print("{0[0)} 1s {1[0]} years old. Whereas {0[1]} 1s {1[1]} years old.".form
at(names, ages))

canain is 25 years old. Whereas Belit is 21 years old.

>>>

www.bdmpublications.com

E Working with Data>

Date and Time

When working with data it's often handy to have access to the time. For example, you

may want to time-stamp an entry or see at what time a user logged into the system and
for how long. Luckily acquiring the date and time is easy, thanks to the Time module.

TIME LORDS

The Time module contains functions that help you retrieve the current system time, reads the date from strings, formats the

time and date and much more.

STEP 1 First you need to import the Time module. It's one

that's built-in to Python 3 so you shouldn’t need to

drop into a command prompt and pip install it. Once it's imported,
you can call the current time and date with a simple command:

import time
time.asctime ()

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help J

Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> import time

>>> time.asctime()
‘Thu Sep 7 08:44:24 2017'
>> |

STEP 2 The time function is split into nine tuples, these are
divided up into indexed items, as with any other

tuple, and shown in the screen shot below.

Index Field Values
0 4-digit year 2016
| Month 1to 12
2 Day 1to 31
3 Hour 0to 23
4 Minute 0 to 59
5 Second 0 to 61 (60 or 61 are leap-seconds)
6 Day of Week 0 to 6 (0 is Monday)
7 Day of year 1 to 366 (Julian day)
8 Daylight savings -1, 0, 1, -1 means library determines DST

www.bdmpublications.com

©600060000000

STEP 3

time.local.time ()

You can see the structure of how time is presented
by entering:

The output is displayed as such: *time.struct time (tm
year=2017, tm mon=9, tm mday=7, tm hour=9, tm_
min=6, tm sec=13, tm wday=3, tm _yday=250, tm_
isdst=0) ’; obviously dependent on your current time as opposed
to the time this book was written.

Python 3.4.2 Shell - o x|
Elle Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type “"copyright”, "credits" or "license()" for more information.
>>> import time

>>> time.localtime()

time.struct_time(tm_year=2017, tm_mon=9, tm_mday=7, tm_hour=9, tm_min=6, tm_sec=
13, rm_wﬂay-!, tm_yday=250, tm_isdst=0)

>>>

F
| ‘
L J

STEP 4 There are numerous functions built into the Time
module. One of the most common of these is
strftime(). With it, you're able to present a wide range of arguments
as it converts the time tuple into a string. For example, to display the
current day of the week you can use:

time.strftime (‘'%A’)

Python 3.4.2 Shell - o x 8
File Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) al

[GCC 4.9.1] on linux

Type “copyright“, “credits” or “license()" for more information.
>>> import time

>>> time.strftime('*A")

Thursday

>>>

STEP 5

strftime (“%a”)
strftime (“%B”)
strftime (“*%b”)
strftime (“$H")
strftime (“$H%M")

This naturally means you can incorporate various
functions into your own code, such as:

time.
time.
time.
time.
time.

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help]

Python 3.4.2 (default, Oct 19 2014, 13:31:11) 3
[GCC 4.9.1] on linux

Type "copyright”. "credits” or "license()" for more information.
>>> import time

>>> time.strftime("%a")

Thu'

N e

u
>>> time.strftime("%8")
‘September*

>>> time.strftime("%b")
“Sep”

>>> time.strftime("%H")
09"

>>> time.strftime(“¥Ha")

‘0941
>
L]

STEP 6 Note the last two entries, with %H and %H%M, as

you can see these are the hours and minutes and as
the last entry indicates, entering them as %H%M doesn't display the
time correctly in the Shell. You can easily rectify this with:

B

time.strftime (“%H:%M")

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux ‘
Type "copyright", “"credits" or "license()" for more information.

>>> Import time I

>>> time.strftime("%a")
‘Thu*

>>> time.strftime("%8")
‘September”

>>> time.strftime("%b")

‘Sep

>>> time.strtime("%H")
09°

>>> time.stritime("xHuM") ‘
0941°

>>> time.strftime(“¥H:3M") |
‘09:43"
>>>

STEP 7 This means you're going to be able to display
either the current time or the time when
something occurred, such as a user entering their name. Try
this code in the Editor:

import time

name=input (“Enter login name: “)
print (“Welcome”, name, “\d”)

print (“User:”, name, “logged in at”,
strftime (“$H:%M"))

time.

Try to extend it further to include day, month, year and so on.

Ele Edt Shej Debug Gotioss windows e

Fythen 3.4.2 (dafault. ocx 19 20, 13N

Thc 3.3.4] on Timue

fype “copyrignt-. “eredits® or “licence()- for more snformation.
ReSTART

)

ogin name: bavid

r 1 name, 4
Welcome Bavid & ol
Uaers

o
wid © oame. Lo
vid logged in ot 0907

L year (including century, e.g. 1998) J

www.bdmpublications.com

(Date and Time

You saw at the end of the previous section, in the

code to calculate Pi to however many decimal places
the users wanted, you can time a particular event in Python. Take
the code from above and alter it slightly by including:

start_time=time.time()
Then there’s:

endtime=time.time () -start_time

————
logintime.py - /home/pi/Documents/Python Code/logintime.py (342) - 0 x
File Edit Format Run Options Windows Help

time =

import
start_time=time.time()
name=1nput(“Enter login name: “)
endtime=time.time()-start_time

|
print(“Welcome”, name,

STEP 9 The output will look similar to the screenshot below.
The timer function needs to be either side of the
input statement, as that’s when the variable name is being created,
depending on how long the user took to log in. The length of time is
then displayed on the last line of the code as the endtime variable.

"d")

print(“User:", name, “"logged in at", time.strftime(" ¥H:3M"))
print ("It took", name, endtime, "to login to their account.™)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help]

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type “copyright”, “"credits" or "license()" for more information.
>>> RESTART

>>>

Enter login name: David

Welcome David \d

User: David logged in at 09:52

It tlook David 5.311823129653931 to login to their account.
>>>

STEP 10 There’s a lot that can be done with the Time
module; some of it is quite complex too, such as
displaying the number of seconds since January 1st 1970. If you
want to drill down further into the Time module, then in the Shell
enter:help (time) to display the current Python version help file
for the Time module.

Python 3.4.2 Shell

Elle Edit Shell Debug Options Windows Help !
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information.
>>> import time
>>> help(time) 2
Help on built-in module time:
NAME

time - This module provides various functions to manipulate time values.

DESCRIPTION
There are two standard representations of time. One 1s the number
of seconds since the Epoch, in UTC (a.k.a. GMT). It may be an integer
or a floating point number (to represent fractions of seconds).
The Epoch is system-defined: on Unix, it is generally January 1st, 1970.
The actual value can be retrieved by calling gntime(0).

The other representation is a tuple of 9 integers giving local time.
| The tuple items are:

month (1-12)

Working with Data

Opening Files

In Python you can read text and binary files in your programs. You can also write to file,

which is something we will look at next. Reading and writing to files enables you to
output and store data from your programs.

OPEN, READ AND WRITE

In Python you create a file object, similar to creating a variable, only pass in the file using the open() Function. Files are usually

categorised as text or binary.

STEP 1 Start by entering some text into your system'’s text
editor. The text editor is best, not a word processor,
as word processors include background formatting and other
elements. In our example, we have the poem The Cimmerian, by
Robert E Howard. You need to save the file as poem.txt.

semud]
File Fdit Search Options Heip
5 e 1 remember
Eipij\Rocuments (Greose Folder .The dark woods, masking slopes of s

| The grey clouds' leaden everlasting
4 |The dusky streams that flowed withol
And the lone winds that whispered di

IVista on vista marching, hills on h
slope beyond slope, cach dork with

gaunt land lay. So when a man c
A rugged peak and gazed, his shaded

Saw but the endless vista - hill on
aphics py Slope beyond slope, each hooded like

& Hellopy
imgpy It was a gloomy land that seemed to
All winds and clouds and dreams tha
& imgest py With bare boughs rattling in the lor

And the dark woodlands brooding ove
Not even lightened by the rare dim

Which made squat shadows out of men
Cimneria, land of Darkness and deep

Py
B mainpy

175 byles 15/08/17

amecountpy 101 bytes 18/08/17

It was so long ago and far awa
1 have forgot the very name men cal
The axe and flint-tipped spear are
And hunts and wars are shadows. I r¢
only the stillness of that sombre 1:
The clouds that piled forever on thi
The dinness of the ever las ting wood

& wordgeme oy 287 bytes 1870817

Character Coding. | Current Locale (UTF-8) +| LF

Cancel

STEP 2 You use the open() function to pass the file into a
variable as an object. You can name the file object
anything you like, but you will need to tell Python the name and
location of the text file you're opening:

poem=open (“/home/pi/Documents/Poem. txt"”)

Python 3.4.2 Shell D
File Edit Shell Debug Options Windows Help J

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> ro@m=open("/home/pl/ﬂocumen\'s/‘Poen.rvr“)

>>>

www.bdmpublications.com

STEP 3 If you now enter poem into the Shell, you will get
some information regarding the text file you've just

asked to be opened. You can now use the poem variable to read the
contents of the file:

poem.read ()

Note than a /n entry in the text represents a new line, as you
used previously.

Python 3.4.2 Shell - o x
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) &
[6CC 4.9.1] on linux

Type “copyright”, "credits” or “license()" for more information.
>>> poem=open(*/home/pi/Documents/Poem. txt")

>>> poem
<_io.TextIOWrapper name='/home/pi/Documents/Poem. txt' mode='r' encoding="UTF-8'>
>>> poen. read()

“I remember\nThe dark woods, masking slopes of sombre hills:\nThe grey clouds’ leaden everlasting
arch:\nThe dusky streams that flowed without a sound,\nAnd the lone winds that whispered down the
passes.\n\n\nvista on vista marching, hills on hills,\nSlope beyond slope, each dark with sullen t

rees,\nOur gaunt land lay. So when a man climbed up\nA rugged peak and gazed, his shaded eye\nsaw

but the endless vista - hill on hill,\nSlope beyond slope. each hooded like its brothers.\mn\nIt

was a gloomy land that seemed to hold\nAll winds and clouds and dreams that shun the sun,\nWith ba

re boughs rattling in the lonesome winds.\nAnd the dark woodlands brooding over all,\nhot even lig

htened by the rare dim sun\nwhich made squat shadows out of men: they called it\nCimmeria, land of
Darkness and deep Night.\m\n\nIt was so long ago and far away\nI have forgot the very name men cal
| led me.\nThe axe and flint-tipped spear are like a dream,\nAnd hunts and wars are shadows. I recal
1\n0nly the stillness of that sombre land:\nThe clouds that piled forever on the hills,\nThe dimne
ss of the everlasting woods.\nCimmeria, land of Darkness and the Night.\m\n\nOh, soul of mine, bor
n out of shadowed hills.\nTo clouds and winds and ghosts that shun the sun.\nHow many deaths shall
serve to break at last\nThis heritage which wraps me in the grey\nApparel of ghosts? I search my h
eart and find\nCimmeria, land of Darkness and the Night."

STEP 4 If you enter poem.read() a second time you will
notice that the text has been removed from the file.

You will need to enter: poem=open (“/home/pi/Documents/
Poem. txt”) again to recreate the file. This time, however, enter:

print (poem.read())

This time, the /n entries are removed in favour of new lines and
readable text.

Python 3.4.2 Shell

| Ble Edt Shel Debug Options Windows Help
>>> poem. read() Al

>>> poem=open(*/home/pi/Documents/Poen. txt")
>>> print(poem.read())

1 remember

The dark woods, masking slopes of sombre hills:
The grey clouds' leaden everlasting arch;

The dusky streams that flowed without a sound,
And the lone winds that whispered down the passes.

Vvista on vista marching, hills on hills,

slope beyond slope, each dark with sullen trees,
Our gaunt land lay. So when a man climbed up

A rugged peak and gazed, his shaded eye

Saw but the endless vista - hill on hill,

Slope beyond slope, each hooded like its brothers.

It was a gloomy land that seemed to hold

ALl winds and clouds and dreams that shun the sun,
With bare boughs rattling in the lonesome winds.
And the dark woodlands brooding over all,

Not even lightened by the rare dim sun

vhich made squat shadows out of men: they called it
Cimmeria, land of Darkness and deep Night.

’7
|

STEP 5 Just as with lists, tuples, dictionaries and so on,
you're able to index individual characters of the
text. For example:
poem.read(5)
Displays the first five characters, whilst again entering:

poem.read(5)

Will display the next five. Entering (1) will display one character at
atime.

Python 3.4.2 Shell =
File Edit Shell Debug Options Windows Help |
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al

[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.
>>> poem=open("”/home/pi/Documents/Poem. txt™)

>>> poem.read(5)

‘I rem’

>>> poem.read(5)

*ember”

>>> |

| I

STEP 6

poem=open (“/home/pi/Documents/Poem. txt"”)
poem.readline ()

Similarly, you can display one line of text at a time by
using the readline() function. For example:

Will display the Ffirst line of the text with:
poem.readline ()

Displaying the next line of text once more.

Python 3.4.2 Shell =1
Eile Edit Shell Debug Options Windows Help e

Python 3.4.2 (default, Oct 19 2014, 13:31:11) 3
[GCC 4.9.1] on linux
Type "copyright”, "credits™ or "license()" for more information. i

>>> poem=open("/home/pi/Documents/Poem. txt™)

>>> poem.readline()

‘I remember\n’

>>> poem.readline()

'Thel dark woods, masking slopes of sombre hills:\n'
>>>

STEP 7 You may have guessed that you can pass the
readline() function into a variable, thus allowing you

to call it again when needed:

poem=open (“/home/pi/Documents/Poem. txt”)
line=poem.readline ()
line

Python 3.4.2 Shell

Eile Edit Shell Debug Qptions Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux |
Type "copyright”, "credits" or "license()" for more information.

>>> poem=open(“/home/pi/Documents/Poem. txt")

>>> line=poem.readline()

>>> line

'I remember\n"

>>3|

i

(Opening Files

Extending this further, you can use readlines() to
grab all the lines of the text and store them as

multiple lists. These can then be stored as a variable:

poem=open (“/home/pi/Documents/Poem. txt"”)
lines=poem.readlines ()

lines[0]
lines[1]
lines[2]
Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) -

[GCC 4.9.1] on linux

Type “copyright“, “credits" or “license()" for more information.
>>> poem=open(”/home/pi/Documents/Poem. txt")

>>> lines=poem.readlines()

>>> lines[0]

‘I remember\n*

>>> lines([1]

‘The dark woods, masking slopes of sombre hills:\n'
>>> lines[2]

“The grey clouds' leaden everlasting arch;\n"

>>>

STEP 9

for lines in lines:
print (lines)

You can also use the for statement to read the lines
of text back to us:

Since this is Python, there are other ways to produce the same output:

poem=open (“/home/pi/Documents/Poem. txt"”)
for lines in poem:
print (lines)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

|
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Jl
[GCC 4.9.1] on linux
Type "copyright", “credits” or "license()" for more information.
>>> poem=open(“/home/pi/Documents/Poem. txt")
>>> for lines in poem:

print(lines)

The dark woods, masking slopes of sombre hills:

The grey clouds' leaden everlasting arch:

I remember I
|

STEP 10 Let's imagine that you want to print the text one
character at a time, like an old dot matrix printer
would. You can use the Time module mixed with what you've looked
at here. Try this:

import time
poem=open (“/home/pi/Documents/Poem. txt”)
lines=poem.read ()
for lines in lines:
print (lines, end="")
time.sleep(.15)

The output is fun to view, and easily incorporated into your own code.

£ gdt rgrmat

e £or Shep Qebug Qptiens widows

4.3 (foult. Gt 19 3014, 131D i i

17 en Tinus |

yright. “Gredits” or “License()" for more information. 1B] posmespenc-mome 1 vacimentermaem ety

RESTART
[— |

Lines 1o Lines: |
praniClines, end="")
time.sleep(.15)

www.bdmpublications.com

E Working with Data>

Writing to Files

The ability to read external files within Python is certainly handy but writing to a fFile is

better still. Using the write() function, you're able to output the results of a program to
a file, that you can then read() back into Python.

WRITE AND CLOSE

The write() function is slightly more complex than read(). Along with the filename you must also include an access mode which
determines whether the file in question is in read or write mode.

©000 ©600060000000

STEP 1 Start by opening IDLE and enter the following: STEP 3 However, the actual text file is still blank (you can

check by opening it up). This is because you've
written the line of text to the file object but not committed it to the
file itself. Part of the write() function is that you need to commit the
Change the destination from /home/pi/Documents to your own changes to the file; you can do this by entering:
system. This code will create a text file called text.txt in write mode
using the variable 't'. If there’s no file of that name in the location, it
will create one. If one already exits, it will overwrite it, so be careful.

t=open (“/home/pi/Documents/text.
txtll . Ilwll)

t.close()

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help
Python 3.4.2 Shell =it X Python 3.4.2 (default, Oct 19 2014, 13:31:11) —
File Edit Shell Debug Options Windows Help ‘ [GCC 4.9.1] on linux
Type "copyright”, “"credits" or "license()" for more information.
Python 3.4.2 (default, Oct 19 2014, 13:31:11) — >>> t=open("/home/pi/Documents/text.txt","w")
[GCC 4.9.1] on linux >>> t.write(“You awake in a small, square room. A single table stands to one sid
Type "copyright", “"credits" or "license()" for more information. e, there is a locked door in front of you.")
>>> t=open(“/home/pi/Documents/text.txt”, "w") | 109
>>> | >>> t.close()
| 5> |
N
STEP 2 You can now write to the text file using the write() STEP 4 If you now open the text file with a text editor,
function. This works opposite to read(), writing lines you can see that the line you created has been
instead of reading them. Try this: written to the file. This gives us the foundation for some interesting

possibilities: perhaps the creation of your own log file or even the

t.write(“You awake in a small, square room. A -
beginning of an adventure game.

single table stands to one side, there is a locked

door in front of you.”) — -
Lile Cdt Shell Debug Options Windows Lielp File Edit Search Of
z ; le Edit Search Options Help
Note the 109. It's the number of characters you've entered. Byt 13 G e T o T A You nake in a suall, square |
B eyt Ceredits® or *licanas(3" for mors infermation. there is a locked door in fror
>>> t=open("/home/pi e, W)
o rg 1o o Tocka tear thierast o see
Pvihon 3.4 2 Shel 1
Python 3.4.2 She ~peX >>> t.close()
Eile Edit Shell Debug Options Windows Help ‘l
Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al ,

[6CC 4.9.1] on linux

Type “copyright”, "credits” or "license()" for more information.

>>> t=open("/home/pi/Documents/text.txt", "w")

>>> t.write("You awake in a small, square room. A single table stands to one sid
e. there is a locked door in front of you.")

109

>>>

www.bdmpublications.com

STEP 5 To expand this code, you can reopen the file using
a', for access or append mode. This will add any text
at the end of the original line instead of wiping the file and creating
anew one. For example:

t=open (“/home/pi/Documents/text.txt”,"a")

t.write (“\n")

t.write (" You stand and survey your surroundings.
On top of the table is some meat, and a cup of
water.\n”)

-
Python 3.4.2 Shell

Eile Edit Shell Debug Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) &l |

[GCC 4.9.1) on linux
for more information. I

-0 x

Type "copyright", “"credits" or "license()"
>>> t=open("/home/pi/Documents/text.txt","a")
>>> t.write("\n")
1

>>> t.write("You stand and survey your surroundings.
meat, and a cup of water.\n")

On top of the table is some

94

>>> I
e | |-

STEP 6 You can keep extending the text line by line,
ending each with a new line (\n). When you're
done, finish the code with t.close() and open the file in a text
editor to see the results:

t.write(“*The door is made of solid oak with iron
strips. It’s bolted from the outside,
in. You are a prisoner!.\n”)
t.close()

locking you

Fio E4L Swch Oyt Wb
o awske in 3 smoll. sauare roon. A singlle (ble stands 1o one side.
hece Tt a Tocksd doir T Tront of

You stand and survey your surroundings. On top of the table is some
at, and 3 cup of wator

e door 13 sace of sol1d ok wlth iron strips. T's bolted from the
outside, locking you in. You are a

STEP 7 There are various types of file access to consider
using the open() function. Each depends on how the
file is accessed and even the position of the cursor. For example, r+
opens a file in read and write and places the cursor at the start of
the file.

-ox|

e Ede Shel Debug Options Windows Holp |} File Edit Search Options Help
ppEn 343 (oL ocs 15 2014, BT Tl Adventure Game:
PR Mo - * infe
ey ed it | [fYou awake in a small, square room. A single table s
there 15 a locked door 1n front of you

Close)
neat, and a cup of wa

The door 15 made of sol1d oak with iron strips. It

outside, locking you in. You are a prisoner

TR
e

(Writing to Files

STEP 8 You can pass variables to a file that you've created
in Python. Perhaps you want the value of Pi to be
written to a file. You can call Pi from the Math module, create a new
file and pass the output of Piinto the new file:

import math
print (*Value of Pi is: “,math.pi)
print (“\nWriting to a file now..”)

writepitofile.py - /home/pi/Docume._ython Code/writepitofilepy (3.4.2) - o x

File Edit Format Run Qptions Windows Help
nport math

print(“value of Pi is: ",math.pi)

print("\nWriting to a file now...")

'

STEP 9

pi=math.pi

Now let's create a variable called pi and assign it the
value of Pi:

You also need to create a new file in which to write Pi to:
t=open (“/home/pi/Documents/pi.txt”, "w")

Remember to change your file location to your own particular
system setup.

writepitofile.py - /nome/pi/Docume..ython Code/writepitofile.py (3.4.2) - o x

File Edit Format Run Qptions Windows Help
import math

print(“value of Pi is: ",math.pi)
print("\nWriting to a file now...")
| pi=math.pi

t=open(“/home/pi/Documents/pi.txt","w")

i

STEP 10 To finish, you can use string formatting to call the
variable and write it to the file, then commit the

changes and close the file:

t.write (“Value of Pi is: {}”
t.close()

.format (pi))

You can see from the results that you're able to pass any variable to
afile.

s o —

-ox tofle Dy - Mome/pi/Decume. Python Codemwrtepictlepy (342) - & x
Hk_u;mummm

ocx 19 2014, 1330111) 7l

its” or “license()” for more informatien.
st

math i)

I Celose)
" Options

www.bdmpublications.com

of Pi is: 3.141392653589793

Writing o 8 Tile now...

Fie it Search Help
Value of Pi is: 3.141502653589703

E Working with Data>

Exceptions

When coding, you'll naturally come across some issues that are out of your control.

Let's assume you ask a user to divide two numbers and they try to divide by zero. This

will create an error and break your code.

EXCEPTIONAL OBJECTS

Rather than stop the flow of your code, Python includes exception objects which handle unexpected errors in the code. You
can combat errors by creating conditions where exceptions may occur.

STEP 1 You can create an exception error by simply trying
to divide a number by zero. This will report back
with the ZeroDivisionError: Division by zero message, as seen in the
screenshot. The ZeroDivisionError part is the exception class, of
which there are many.

Python 3.4.2 Shell - o x 8

File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type “"copyright”, “credits" or "license()" for more information.

>>> 1/0
Traceback (most recent call last):
File "<pyshell#0>", line 1, in <module>

1/0
ZeroDivisionError: division by zero
>>> |

u

STEP 2 Most exceptions E
are raised k

automatically when Python
comes across something that's
inherently wrong with the code.
However, you can create your
own exceptions that are designed
to contain the potential error and
react to it, as opposed to letting
the code fail.

www.bdmpublications.com

STEP 3 You can use the functions raise exception to create
our own error handling code within Python. Let's

assume your code has you warping around the cosmos, too much
however results in a warp core breach. To stop the game from
exiting due to the warp core going supernova, you can create a
custom exception:

raise Exception (“warp core breach”)

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type “copyright”, “credits” or “license()" for more information.
>>> raise Exception(“warp core breach”)
Traceback (most recent call last):
g el o iy L VRN
raise Exception(“warp core breach")
Exceruon: warp core breach

_nx
>>>

“
. I

STEP 4 To trap any errors in the code you can encase the
potential error within a try: block. This block consists
of try, except, else, where the code is held within try:, then if there's
an exception do something, else do something else.

Untitled

Flle Edit Format Run QOptions Windows Help

Insert your operations here ----> p
Bl pt Exception 1:
| If there 1= an excpetion do this ---->

ot Exception 2:
‘I If there 15 another exception do this ---->

If there is no exception, then do this ----3

STEP 5 For example, use the divide by zero error. You can
create an exception where the code can handle the

error without Python quitting due to the problem:

(2iE7
a=int (input (“Enter the first number: “))
b=int (input (“Enter the second number: “))

print (a/b)
except ZeroDivisionError:

print (“You have tried to divide by zero!”)
else:

print (*You didn’t divide by zero. Well done!”)

|
STEP 6 You can use exceptions to handle a variety of useful
tasks. Using an example from our previous tutorials,

let’s assume you want to open a file and write to it:

EEaVa:
txt =
\\rll)
txt.write(“*This is a test.
shortly resume!”)

open (“/home/pi/Documents/textfile.txt”,
Normal service will

except L[OError:

print (“Error: unable to write the file. Check
permissions”)

else:

print (“Content written to file successfully.

Have a nice day.”)
txthielloge ()

Efo KOt Shej Qebug Gotions Windows kel

tis oy
Type “copyrightr “eradits® or “licansa()” for mare information

o to write the file. Chack parmissions

N st

STEP 7 Obviously this won't work due to the file textfile.
txt being opened as read only (the “r" part). So in
this case rather than Python telling you that you're doing something
wrong, you've created an exception using the IOError class

informing the user that the permissions are incorrect.

| exception2.py - /home/pi/Documen../Python Code/exception2.py (342) - O x
| Ele Edt Format Run Options Windows Help ’

(Exceptions

STEP 8 Naturally, you can quickly fix the issue by changing

the “r" read only instance with a “w” for write. This,

as you already know, will create the file and write the content then
commit the changes to the file. The end result will report a different
set of circumstances, in this case, a successful execution of the code.

Ele Edt Shel Debug Qptions Windows Lielp
Python 3.4.2 (defoult, Oct 19 2014, 137
LWC 1921 on Linux
“Copyr L. “Credits” or “licemse()
REST

for wore information
ART

+ unable to write the file. Check permissions
RESTART

Contant written to file successtully. Have 3 nice day,

_A—

Tie fdt Search Optons iieip
This is a test. Normal service will shortly resume!

13|
.

[ire 10 ok

P R RS R

STEP 9 You can also use a finally: block, which works in a
similar fashion but you can’t use else with it. To use

our example from Step 6:

ElVe:
txt =
\\ru)
try:
txt.write(“This is a test.
shortly resume!”)
finally:
print (“Content written to file successfully.
Have a nice day.”)
txt.close ()
except IOError:
print N Exror:
permissions”)

eSSt oot Gotors_Wndoms e | e 68 ramat Aun s ot

TyThon 3 47 (GRTaUIE, 00T 18 701 13ITIT) F|
164 4.9.1) on Linux

Type “Copyright-. “eradits® or “licente()® for more information.

RESTAsT

open (“/home/pi/Documents/textfile.txt”,

Normal service will

unable to write the file. Check

Error: unsble to nrite the file. Check permissions

STEP 10 As before an error will occur as you've used the
“r" read-only permission. If you change it to a “w”,
then the code will execute without the error being displayed in the
IDLE Shell. Needless to say, it can be a tricky getting the exception
code right the first time. Practise though, and you will get the hang
of it.

~ — e ————
Ele Gt Shel Dobuy Giors Windoms Heb B Bt Famat fun Gotiors Windows Heb

try: Al
‘ txt = open(“/home/pi/Documents/textfile.txt”, “r")

txt.write("This is a test. Normal service will shortly resume!")
cept IOError:

print (“Error: unable to write the file. Check permissions")

" print (“Content written to file successfully. Have a nice day.")
' txt.close()

| |
|
I

Tythen 187 (@etaT. Oet 18 2014, TINTIT) |
(6C 2.9.1) on Tin
ypo “copyrighe-. s

x5 or “licenso()” for more infomation.
REsTaT

ble €0 write the fils. Check parmissions
ReStant

€ written to file successtully. Kave 3 nice day

EROCT in 7651

ot s S e e e N

www.bdmpublications.com _

ﬁ Working with Data>

Python Graphics

While dealing with text on the screen, either as a game or in a program, is great, there

will come a time when a bit of graphical representation wouldn’t go amiss. Python 3
has numerous ways in which to include graphics and they're surprisingly powerful too.

GOING GRAPHICAL

You can draw simple graphics, lines, squares and so on, or you can use one of the many Python modules available, to bring out

some spectacular effects.

STEP 1 One of the best graphical modules to begin learning
Python graphics is Turtle. The Turtle module is, as
the name suggests, based on the turtle robots used in many schools,
that can be programmed to draw something on a large piece
of paper on the floor. The Turtle module can be imported with:
import turtle

Python 3.4.2 Shell e arx il
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux

Type "copyright”, “"credits” or "license()" for more information.
>>> import turtle

>>>

import turtle

Let's begin by drawing a simple circle. Start a New
File, then enter the following code:

turtle.circle(50)
turtle.getscreen() ._root.mainloop ()

As usual press F5 to save the code and execute it. A new window will
now open up and the ‘Turtle’ will draw a circle.

www.bdmpublications.com

STEP 3 The command turtle.circle(50) is what draws the
circle on the screen, with 50 being the size. You
can play around with the sizes if you like, going up to 100, 150 and
beyond; you can draw an arc by entering: turtle.circle (50,
180), where the size is 50, but you're telling Python to only draw
180° of the circle.

| - elp
- Ele £t Fomat Bun prions windows B
7
i

1

A

The last part of the circle code tells Python to keep
the window where the drawing is taking place to
remain open, so the user can click to close it. Now, let's make a square:

import turtle
print (“Drawing a square..”)

for t in range(4) :
turtle.forward(100)
turtle.left (90)

turtle.getscreen() ._root.mainloop ()

You can see that we've inserted a loop to draw the sides of the square.

r— e

©000

turtle.color (“*Red”)

You can add a new line to the square code to add
some colour:

Then you can even change the character to an actual turtle by entering:
turtle.shape (“turtle”)

You can also use the command turtle.begin £ill(),and
turtle.end £i11 () tofillin the square with the chosen colours;
red outline, yellow fill in this case.

STEP 6 You can see that the Turtle module can draw
out some pretty good shapes and become a little
more complex as you begin to master the way it works. Enter
this example:

from turtle import *
color(‘red’, ‘yellow’)
begin £ill ()
while True:

forward (200)

left (170)

if abs(pos()) < 1:

break

end £ill()
done ()

Eile Edit Format Run Options Windows Help

turtle import ¢

It's a different method, ;ﬁ;;;(,;;;(, yellon)
but very effective.

forward(zao)
left(170)
abs(pos()) < 1:

end_fill()
done()

$6060008000060000000

STEP 7

Another way in which you can display graphics is
by using the Pygame module. There are numerous

ways in which pygame can help you output graphics to the screen
but for now let's look at displaying a predefined image. Start by
opening a browser and finding an image, then save it to the folder
where you save your Python code.

raspbery pi logo at DuckDuckGo - Chromium
@ raspberry pilogo - x a

ol

& €| @& secure | https//duckduckgo.com

United Kingdom v Safe Search: Strict v All Sizes v Al Type:

. .Raspbengl - -

* Allayouts ¥ Al Colours v

CPython Graphics m

©00600

STEP 8 Now let's get the code by importing the Pygame module:

import pygame
pygame.init ()

img = pygame.image.load (“RPi.png”)

white = (255, 255, 255) imgtest py - /home/pi/Docur]

w = 900 File Edit Format Run Options Windows Help
[import pygame

h = 450 pygame. init()

screen = pygame.display. ing = prges. fuage. losdt"We1.eng")

set mode ((w, h)) vy:hf[;m-l (255, 255, 255)
s . . h = 450
screen.fill ((white)) screen = pygame.display.set_mode((w, h))
screen. Fill((white))

screen. fill((white))
screen.blit(img,(0.0))
pygame.display. flip()

screen.fill ((white))
screen.blit (img, (0, 0)
pygame.display.flip()

event in pygame.event.get():
f event.type == pygame.QUIT:

pygame. quit()

while True:

for event in pygame.event.get () :

if event.type == pygame.QUIT:
pygame.quit ()
STEP 9 In the previous step you imported pygame, initiated
the pygame engine and asked it to import our saved

Raspberry Pilogo image, saved as RPi.png. Next you defined the
background colour of the window to display the image and the

window size as per the actual image dimensions. Finally you have a
loop to close the window.

w = 900

h = 450

screen = pygame.display.set_mode((w, h))
screen.fill{{white))

screen.fill((white))
screen.blit{img,({0,0))
pygame.display.flip()

rue:

for event in pygame.event.get():

1T event.type == pygame . QUIT:
pygame.quit()

©00

STEP 10 Press F5 to save and execute the code and your
image will be displayed in a new window. Have a
play around with the colours, sizes and so on and take time to look

up the many functions within the Pygame module too.

Efe got Format Bun Qptions wndows Help
pygme

screen. hnxn mg. m on
pygsme. display

RaspberryPi

mm O
“Frase qute

www.bdmpublications.com

E Working with Data>

Combining What
You Know So Far

Based on what you've looked at over this section, let’s combine it all and come up with

a piece of code that can easily be applied into a real-world situation; or at the very
least, something which you can incorporate into your programs.

LOGGINGIN

For this example, let’s look to a piece of code that creates user logins and then allows them to log into the system and write
the time they logged in at. You can even include an option to quit the program by pressing ‘q’.

©000 $000

STEP 1 Begin by importing the Time module, creating STEP 3 The global status statement separates a local
anew dictionary to handle the usernames and variable from one that can be called throughout
passwords and creating a variable to evaluate the current status of the code, this way you can use the g=quit element without it being
the program: changed inside the function. We've also referenced some newly

. . defined functions: oldUser and newUser which we'll get to next.
import time

users = {} jof mainMenu():
wn bal status
status = status = input("Do you have a login account? y/n? Or press q to quit.")
¥ status == “y":
olduser()

‘ *login.py - /home/pi/Documents/Python Code/login py (3.4.2)* elif S;ﬁtus(T n":
newlUser
L File Edit Format Run Options Windows Help elif status == "q":
N[import time Al quit()
users = {} I
status = "
. I

STEP 4 The newUser function is next:

def newUser () :

STEP 2 Next you need to define some functions. You can createLogin = input (“Create a login name: “)

begin by creating the main menu, where all users
will return to after selecting the available options:

$000

if createlogin in users:
print (“\nLogin name already exists!\n”)

def mainMenu () : else:
global status createPassw = input (“Create password: “)
status = input (“Do you have a login account? users [createlogin] = createPassw
y/n? Or press g to quit.”) print (“\nUser created!\n”)
if status == “y”: logins=open (“/home/pi/Documents/logins.txt”,
oldUser () var)
elld Ffi gEa s I==n logins.write (“*\n” + createlogin + “ “ +
newUser () createPassw)
elif status == “g”: logins.close()
quit ()

This creates a new user and password, and writes the entries into a
file called logins.txt.

login.py - /home/pi/Documents/Python Code/login.py (3.4.2)

‘ ~ Elle Edit Format Run Options Windows Help)
import time il
users = {} def newUser():
status = " createlLogin = input(“Create a login name: ")
lef mainMenu(): if createLogin in users:
gl | status print ("\nLogin name already exists!\n")
L] status = input("Do you have a login account? y/n? Or press q to quit.") else:
f status == “y": createPassw = input(“Create password: ")
oldUser() users[createlLogin] = createPassw
elif status == "n": print("\nUser created!\n")
newUser() logins=open("“/home/pi/Documents/logins.txt", “a")
elif status == "q": logins.write("\n" + createLogin + “ " 4 createPassw)
ll quit() logins.close()| J

m www.bdmpublications.com

STEP 5 You will need to specify your own location for the
logins.txt file, since we're using a Raspberry Pi.
Essentially, this adds the username and password inputs from the
user to the existing users{} dictionary, so the key and value structure
remains: each user is the key, the password is the value.

def newUser():
createLogin = input(“Create a login name: ")

LT createLoglin in users:
print ("\nLogin name already exists!\n")

createPassw = input(“Create password: ")
users[createLogin] = createPassw

print("\nUser created!\n")
logins=open("/home/pi/Documents/logins.txt"”, "a")
logins.write("\n" + createlLogin + " " + createPassw)
logins.close()

$0000000000000000000000000000000008000000000000000000000000000000

STEP 6 Now to create the oldUser function:

def oldUser() :
login = input (“Enter login name: “)
passw = input (“Enter password: “)

check if user exists and login matches
password

if login in users and users([login] == passw:

print (“\nLogin successful!\n”)
print (“User:”, login, “accessed the system
on:”, time.asctime())
else:
print (“\nUser doesn’t exist or wrong

password!\n")

. status = input("Do you have a login account? y/n? Or press q to quit.")
1f status == "y":
olduser()
elif status == “n":
newUser () ‘

elif status == “q":
quit()
lef newUser():
createLogin = input(“Create a login name: “)
1f createLogin 1n users:
print ("\nLogin name already exists!\n")
createPassw = input(“Create password: ") |
users[createLogin] = createPassw
print("\nUser created!\n")
logins=open(“/home/pi/Documents/logins.txt", “a"“)
logins.write("\n" + createLogin + " "
logins.close()
=

+ createPassw)

jef olduser():
login = input(“"Enter login name: ")
passw = input(“Enter password: ")

check if user exists and login matches password
1f login 1n users and users[login] == passw:
print ("\nLogin successfuli\n")

print (“User:*, login, "accessed the system on:", time.asctime())

print ("\nUser doesn't exist or wrong password!\n")

STEP 7 There's a fair bit happening here. There are login
and passw variables, which are then matched to the
users dictionary. If there’s a match, then you have a successful login
and the time and date of the login is outputted. If they don’t match,
then you print an error and the process starts again.

ief oldUser():
login = input("Enter login name
passw = input(“Enter password: ")

check 1if user exists and login matches password

if login in users and users[login] == passw:

print (“\nLogin successful!\n")

print (“User:", login, “accessed the system on:", time.asctime())
else:
print ("\nUser doesn't exist or wrong password!\n")

CCombining What You Know So Far

$00600

this with:

Finally, you need to continually check that the ‘g key
hasn’t been pressed to exit the program. We can do

while status != “g”:

status = displayMenu ()
login.py - /home/pi/Docun thon Code/login.py (3.4.2) - o x
File Edit Format Run Options Windows Help
[1mport time Al
users = {}

status = "

def mainMenu():

| global status

| status = input("Do you have a login account? y/n? Or press q to quit.")
if status == "y":

| olduser()

| elif status == "n":
newUser()
elif status == "q":
quit()
| def newUser():

createlLogin = input("Create a login name: ")

1f createLogin in users:
print (“\nLogin name already exists!\n")

else:

createPassw = input(“Create password: ")

users[createLogin] = createPassw

print(“\nUser created!\n")

| logins=open(”/home/pi/Documents/logins. txt”, “"a")

logins.write(“\n" + createLogin + “ “ + createPassw)

logins.close()

f olduser():
login = input(“Enter login name:)
passw = input(“Enter password: ")

check if user exists and login matches password
1f login in users and users[login] == passw:
print (“"\nLogin successfulf\n")
print (“User:“, login, “accessed the system on:", time.asctime())
else:
print ("\nUser doesn't exist or wrong password!\n")

1le status != "q":
‘ status = displayMenu()

STEP 9 Although a seemingly minor two lines, the while
loop is what keeps the program running. At the end
of every function it's checked against the current value of status. If
that global value isn't ‘q’ then the program continues. If it's equal to
‘g’ then the program can quit.

while status != "q":
status = displayMenu()

STEP 10 You can now create users, then log in with their
names and passwords, with the logins.txt file
being created to store the login data and successful logins being
time-stamped. Now it’s up to you to further improve the code.
Perhaps you can import the list of created users from a previous
session and display a graphic upon a successful login?

e ot het Dubug Optens wndows e

www.bdmpublications.com _

ﬁ Working with Data>

Python in Focus:
Gaming

Although not always considered as the ideal programming language for developing
games, Python has come a long way in recent years and is now one of the contributing

elements to a huge number of titles.

The video game industry generates something in the region of $140 billion each year, and that number is growing fast. It's a long way from
the 8-bit days of the Commodore 64 and ZX Spectrum; the arcade titles that used to devour our pocket money and the wood panelled
home consoles that Atari lovingly developed. These days, it's all about teams of coders, graphic artists, musicians, PR, projects and

development platforms.

GAME CODE

Coding a game from scratch, using raw code, has become
something of the past. Most games these days are created using
arange of development tools. These tools can be off-the-shelf
engines, such as the Unreal Engine, while others are custom built
around an original product, such as the world generating engine
that Bethesda use for the Skyrim and Fallout series of games.
Others examples can be coded from the ground up, but these
are generally few and far between. So where does Python fit
into all this?

The limiting factor with Python is performance. While most
games require a huge degree of performance from the platform
for which they are written, Python's code, which is good, isn't
really designed to cope with the fast-paced formula on which
games such as Battlefield or the Call of Duty series are based.
These games are often coded with C++, or some other form of
low-level programming language. But that doesn’t mean Python
is left out in the cold when it comes to game development, in
fact it's quite the opposite.

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2

C000 ORG ROM+$0000 BEGIN MONITOR
C000 8E 00 70 START LDS #STACK

e e e ek ek ok e ok ke ok ek ko ok ok ek
* FUNCTION: INITA - Initialize ACIA

* INPUT: none

* OUTPUT: none

* CALLS: none

* DESTROYS: acc A

0013 RESETA EQU %00010011

0011 CTLREG EQU %$00010001

Cc003 86 13 INITA LDA A #RESETA RESET ACIA

C005 B7 80 04 STA A ACIA

c008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
COOA B7 80 04 STA A ACIA

COOD 7E CO F1 JMP SIGNON GO TO START OF MONITOR

HAAEAAAAERAAKERAE KRR AERE AR AR A IR A A AR
* FUNCTION: INCH - Input character

* INPUT: none

* OUTPUT: char in acc A

* DESTROYS: acc A

* CALLS: none

* DESCRIPTION: Gets 1 character from terminal

m www.bdmpublications.com

BUILDING TOOLS

In the game industry, Python is mostly limited to the
development of in-game tools used by the developers of the
game, or to help bridge the gaps between different areas of
code. For example, in-game tools coded in Python can be used by
designers to create levels for the game, or specific elements that
would make up a character’s inventory, or even creating dialog
between the player and non-playing characters in the game.

You will also find that Python can be used to control the game’s
Al (Artificial Intelligence), which will give the characters in a game
a certain element of life. As an example, the popular Sims games
consist of characters other than the one the gamer controls.
These Sims will go about their business with their actions
determined by the player's choices, this involves an advanced
form of Artificial Intelligence that is coded using Python.

Other examples include many of the available open world
games, where the introduction of the player will change the
course of a village's, Town's, or even city's inhabitant's behaviour.
Blow up a few cars in the middle of the street and it'll affect

the way the other drivers behave; jump up and down on top of

a market stall in the middle of a medieval village and the folk
around you will react. This, again, is all down to Python code
written within the main code of the game, alongside the game
development engine.

<Python in Focus: Gaming @

PYTHON-POWERED GAMES

Some good examples of the types of games in which Python is
used are the following:

Battlefield 2 - Python is used for the game’s add-ons and
functionality of the player elements.

The Sims — Al, and many of the game’s interactions.

Civilisation — Python is used throughout the Civ games,
controlling movement and the non-player Al.

Eve Online - Utilises Python for floating point number
calculations and other tasks.

World of Tanks — Python is used to control Al objects and detail
the large amount of graphical data.

In particular, it's worth noting that Python's use in games is due
to its ability to automate repetitive tasks quickly. While another
programming language may be faster at drawing the graphics
on the screen, Python can quickly repeat resizing hundreds of
textures in batches. There's also Python's excellent and sizeable
libraries that can be tweaked for certain tasks, specifically
in-game tasks freeing up other components to deliver the
performance that modern games need.

KEEP ON
GAMING

In short, while Python may
not be the ideal language
with which to create a
modern game entirely, its
use is often behind the
scenes, in areas where other
programming languages
will struggle. Python can

be used as the glue that
sticks elements of game
technologies together,
creating complex Al or simply
designing a dialog box.

www.bdmpublications.com

) e

USing. =" T
Modules | -

e § L :

e
S -

Tryd

] False |
: = False
1.1] True:
§'ii #selaction at the: end -a
.1 _ob.selgct=1 :
4 ; - eo® .
‘Pod c® o’h_.se.];é?t=]‘ o el
® o. .—'x_t. ééﬂé'.‘dbgec'tﬁ“ Biats

- ¢ -
P h ‘ | "
i I "‘-Ill‘ ected"r

e .name] - 1°

&

Ry ™ ™
‘e select e

96.4897 ’ o 1 nt (

88 www.bdmpublications.com

Pl -"-.

Comavosior €

A Python module is a Python-created
source file that contains the necessary
code for classes, functions and global
variables. You can bind and reference
modules to extend functionality,

and create even more spectacular
Python programs.

Are you curious about how to improve
your use of these modulesto add a
little something extra to your code?
Then read on and learn how they can be
used to fashion fantastic code with
graphics, animations and operating
system specific commands.

Calendar Module

OS Module

Using the Math Module

Random Module

Tkinter Module

Pygame Module

Basic Animation

Create Your Own Modules

Python in Focus: Artificial Intelligence

www.bdmpublications.com

Using Modules

Calendar Module

Beyond the Time module, the Calendar module can produce some interesting results

when executed within your code. It does far more than simply display the date in the
Time module-like format, you can actually call up a wall calendar type display.

WORKING WITH DATES

The Calendar module is built into Python 3. However, if for some reason it's not installed you can add it using pip install
calendar as a Windows administrator, or sudo pip install calendar for Linux and macOS.

sesccsccse

STEP 1 Launch Python 3 and enter: import calendar to
call up the module and its inherent functions. Once

it's loaded into memory, start by entering:

sep=calendar.TextCalendar (calendar.SUNDAY)
sep.prmonth (2019, 9)

Python 3.5.3 Shell

Elle Edit Shell Debug QOptions Window Help

Python 3.5.3 (default, Sep 27 2018, 17:25:39)
[6CC 6.3.0 20170516] on linux
Type "copyright", "credits" or "license()" for more information.
>>> import calendar
>>> sep=calendar.TextCalendar(calendar.SUNDAY)
>>> sep.prmonth(2019, 9)
September 2019
Su Mo Tu We Th Fr Sa
1 2 3456 67

8 91011 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
>>>
>>>

STEP 2 You can see that the days of September 2019 are
displayed in a wall calendar fashion. Naturally you

can change the 2019, 9 part of the second line to any year and
month you want, a birthday for example (1973, 6). The first line
configures TextCalendar to start its weeks on a Sunday; you can opt
for Monday if you prefer.

Python 3.5.3 Shell - O x
Elle Edit Shell Debug Options Window Help

Python 3.5.3 (default, Sep 27 2018, 17:25:39) Al
[6CC 6.3.0 26170516] on linux
Type "copyright", "credits" or "license()" for more information.
>>> import calendar
>>> sep=calendar.TextCalendar(calendar.SUNDAY)
>>> sep.prmonth(2019, 9)
September 2019
Su Mo Tu We Th Fr Sa
12 3 45 6 7
8 910 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
25>
>>> birthday=calendar.TextCalendar(calendar.MONDAY)
>>> birthday.prmonth(1973, 6)
June 1973
Mo Tu We Th Fr Sa Su
2 3

1
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

m www.bdmpublications.com

STEP 3 There are numerous functions within the Calendar
module that may be of interest to you when
forming your own code. For example, you can display the number of
leap years between two specific years:

leaps=calendar.leapdays (1900,
print (leaps)

2019)

The resultis 29, starting from 1904 onward.

.3 Shell

Python 3.5
Options Window Help

File Edit 5Shell Debug

Python 3.5.3 (default, Sep 27 2018, 17:25:39)

[6CC 6.3.0 20176516] on linux

Type "copyright”, "credits" or "license()" for more information
>>> import calendar

>>> leaps=calendar.leapdays (1900, 2019)

>>> print(leaps)

29

o3

STEP 4

import calendar

print (“>>>>>>>>>>Leap Year Calculator<<<<<<<<<<\n”)
yl=int (input (“Enter the first year: “))

y2=int (input (*Enter the second year: “))
leaps=calendar. leapdays (y1l, y2)

print (*Number of leap years between”,
y2, “is:”, leaps)

You could even fashion that particular example into
a piece of working, user interactive Python code:

yl, “and”,

leap
Ele Edt Shell Debug Options Window Help | ~ Ble Edt Format Run Qpt
Python 3.5.3 (default, Sep 27 2018, 17:25:39) F Import calendar

6.3.0 20170516] on linux print(">>>>>>>>>>Leap V¢
opyright”, "credits" or "license()" for more information. yl=int(input(“Enter the
y2=int(input(“Enter the
leapdays|

print(“Nunber of leap y¢

== RESTART: /home/pi.
eap Year

leaps.py

Enter the first year: 1155
Enter the second year: 202
Number of leap years beween 1756 and 2022 is: 65

5

L

‘ leaps.py - /nome/pi/Documents/leaps.py (3.5.3) - 0 x
‘ q Blo Edit meat Run Options Window Help |

nation. ‘yl int(input(“Enter the first year:

St (e >>>>>>>>>>Leap Vear Calculator<<<<<<<<<<\n®)
yz int(input("Enter the second year: "))

.leapdays(yl, y2)

pnm(Number of leap years between”, yl, “and“, y2, “is:", leaps)

Calendar Module

STEP 5 You can also create a program that will display all STEP 8 You're also able to print the individual months, or
the days, weeks and months within a given year: days, of the week:
import calendar import calendar
year=int (input (“Enter the year to display: “) for name in calendar.month name:
print (calendar.prcal (year)) print (name)
We're sure you'll agree that's quite a handy bit of code to have import calendar
to hand. for name in calendar.day name:

print (name)

[Lot Shel Debug Gotons Wndow Lielp

RESTART T
Enter the year G0 display: 2610

Python 3.5.3 Shell - 0 x
"o T .L"':";;;:s,‘ ‘ File Edit Shell Debug Options Window Help |
dddadal i Python 3.5.3 (default, Sep 27 2018, 17:25:39) Al
826220 20 30 [6CC 6.3.0 20170516] on linux
i Type "copyright"”, "credits" or "license()" for more information. |
b >>> import calendar |
103112 13 2418 16 >>> for name in calendar.month_name:
Tisleedizn
20252627 28 39 30 print(name)
soptesbor
o WRTH 5y
o301 53 18 14 38 |
Witz nn
punmann January
| February
octone wovesber oeceabar
Mo TyweTNFrSaS: Mo TuMeTHErSaSy Mo Tuwe ThrSasy March
Swny aserssm 23esers April
Masaelileiem BBl smimius
MMM W 0N282u WUBBBAN May
R BT Bunnnnn e
0 00 ©000ss00sssssconss

STEP 6 Interestingly we can also list the number of daysin a STEP 9 The Calendar module also allows us to write the
month by using a simple: for loop: functions in HTML, so that you can display it on a
S ERT R L website. Let's start by creating a new file:

cal=calendar.TextCalendar (calendar.SUNDAY) import calendar
for i in cal.itermonthdays (2019, 6): cal=open(“/home/pi/Documents/cal.html”, “w”)
print (i) c=calendar.HTMLCalendar (calendar.SUNDAY)

cal.write (c.formatmonth (2019, 1))
daysinmonth.py - /home/pi/Documents/daysinmon cal.close ()

Eile Edit Format Run Qptions Window Help This code will create an HTML file called cal, open it with a browser
import calendar and it displays the calendar for January 2019.
cal=calendar.TextCalendar(calendar.SUNDAY)
for i in cal.itermonthdays(2019, 6): years py - /home/pi/Document
print(i) _/ O calhtml = Fle Edt Format Run Options Window Help
C | @ file///home/pi/Documents/cal htmi import calendar
cal=open(”/home/pi/Documents/cal.html”, "w")
January 2019 c=calendar .HTHMLCalendar (calendar . SUNDAY)
SunMonTueWedThuFriSat cai.u;ue{cj;.famamon(h(zom, 1))
TecWedThabsts callclose

6 7 8 9 10112
13 14 1516 17 1819
20 21 22 23 24 2526
27 28 29 30 31

©6000800000000000 $600

STEP 7 You can see that, at the outset, the code produced STEP 10 Of course, you can modify that to display a given
some zeros. This is due to the starting day of the year as a web page calendar:
week, Sunday in this case, plus overlapping days from the previous

month. Meaning the counting of the days will start on Saturday 1st Sporkicalcusar

June 2019 and will total 30, as the output correctly displays. year=int (input (“Enter the year to display as a
webpage: “))
Python 3.5.3 Shell maa cal=open (“/home/pi/Documents/cal.html”, “w”)

Elle Edt Shell Debug Options Window Help cal.write (calendar.HTMLCalendar (calendar.MONDAY) .

0 formatyear (year))

]

1 cal.close ()

2

: This code asks the user for a year and then creates the necessary
~ webpage. Remember to change your file destination.

a

9 cal htmi - Chromium AT

S| B Ede Fgmat fun Qptions Vandow
11 € | @ file/thome/pi/Documents/cal htenl @ calendar

10 0 cal himl x

year=int(input(webpage: "))
12 v il TRt e i
cal.urite(calendar .HTHLCalendar (calendar . HONDAY) .
13 Tanuary February Marh ey
14 12 3456 123 123 i
15 7 89 10112134 56 7 89104 56 7 8910
16 1401516 17 B1920 11 1213 W 151617 11 1213 14 151617
21 2223 2425262718 1920 21 2232418 1920 21 2B
17 2 2930 31 3 %0 8 25 2627 8 93031
18 April June
19 1.23 4567 i 12

www.bdmpublications.com _

ﬁ Using Modules>

OS Module

The OS module allows you to interact directly with the built-in commands found in your

operating system. Commands vary depending on the OS you're running, as some will
work with Windows whereas others will work with Linux and macOS.

INTO THE SYSTEM

One of the primary features of the OS module is the ability to list, move, create, delete and otherwise interact with files
stored on the system, making it the perfect module for backup code.

STEP 1 You can start the OS module with some simple
functions to see how it interacts with the operating
system environment that Python is running on. If you're using Linux
or the Raspberry Pi, try this:

import os
home=o0s.getcwd ()
print (home)

Python 3.4.2 Shell D ix
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) &1
[GCC 4.9.1] on linux

Type “copyright”, “credits” or "license()" for more information.
>>> import os

>>> home=0s.getcwd()

>>> print(home)

/home/pi

>>> |

b B

STEP 2 The returned result from printing the variable home
is the current user’'s home folder on the system.
In our example that's /home/pi; it will be different depending on
the user name you log in as and the operating system you use.
For example, Windows 10 will output: C:\Program Files (x86)\
Python36-32.

[@ Python 3.62 She - o

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5£d33b5, Jul 8 2017, 04:14:34) [MSC v.1900 32 bit (Intel)]
on win32

Type "copyright", "credits" or "license()" for more information.

>>> import os

>>> home=os.getcwd ()

>>> print (home)
C:\Program Files (x86)\Python36-32
| >>>

m www.bdmpublications.com

STEP 3 The Windows output is different as that's the
current working directory of Python, as determined
by the system; as you might suspect, the os.getcwd() function is
asking Python to retrieve the Current Working Directory. Linux users
will see something along the same lines as the Raspberry Pi, as will
macOS users.

Python 3.5.2shell
Elle Edit Shell Debug Options window Help

Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[6CC 5.4.0 20160609] on linux

Type "copyright®, “credits” or "license()" for more information.
> tos

ome=03 . getcwd ()
rint (home)
david

STEP 4 Yet another interesting element to the OS module,
is its ability to launch programs that are installed
in the host system. For instance, if you wanted to launch the
Chromium browser from within a Python program you can use
the command:

import os
browser=os.system(“/usr/bin/chromium-browser”)

STEP 5 The os.system() function is what allows interaction
with external programs; you can even call up
previous Python programs using this method. You will obviously
need to know the full path and program file name for it to work
successfully. However, you can use the following:

import os
os.system(‘'start chrome “https://www.youtube.com/
feed/music”’)

f oosn

STEP 6 For Step 5's example we used Windows, to show
that the OS module works roughly the same across
all platforms. In that case, we opened YouTube's music feed page, so
it is therefore possible to open specific pages:

import os
os.system('chromium-browser “http://
bdmpublications.com/” ")

©600000000000000000000000000000000600600000000000000000800000000000

STEP 7

the entire command and launching Chromium, whereas the double
quotes open the specified page. You can even use variables to call
multiple tabs in the same browser:

Note in the previous step’s example the use of
single and double-quotes. The single quotes encase

import os

a= (‘chromium-browser “http://bdmpublications.
com/"” ")

b= ('chromium-browser “http://www.google.co.uk”’)
os.system(a + b)

A °
Perfectly combining high quality with great value

STEP 8 The ability to manipulate directories, or folders if
you prefer, is one of the OS module’s best features.

For example, to create a new directory you can use:

import os
os.mkdir (“"NEW”)

This creates a new directory within the Current Working Directory,
named according to the object in the mkdir function.

i

©600

STEP 9

import os
os.rename (“NEW” ,

You can also rename any directories you've created
by entering:

“OLD")
To delete them:

import os
os.rmdir (“OLD”)

©000

STEP 10

with OS and time to create a time-stamped backup directory, and
copy files into it:

Another module that goes together with OS is
shutil. You can use the Shutil module together

import os, shutil, time

root_src_dir = r’/home/pi/Documents’
root_dst _dir = ‘/home/pi/backup/’ + time.asctime ()

for src dir, dirs,
dst dir =
dsiENda R
if not os.path.exists(dst dir):
os.makedirs (dst_dir)

files! in os.walk(root sre dir):
src_dir.replace (root_src_dir, root_

for Eillem i nifhiiies:
sre file =i os.path.join(sre dir, Eile)
dst fillel = os.path.join(dstidir, file)

if os.path.exists(dst_file):
os.remove (dst_file)
shutil.copy(src_file, dst_dir)

print (*>>>>>>>>>>Backup complete<<<<<<<<<<”)

www.bdmpublications.com

E Using Modules>

Using the Math Module

One of the most used modules you will come across is the Math module. As we've

mentioned previously in this book, mathematics is the backbone of programming and
there’s an incredible number of uses the Math module can have in your code.

E=MC?

The Math module provides access to a plethora of mathematical functions, from simply displaying the value of Pi, to helping

you create complex 3D shapes.

$000

STEP 1 The Math module is built-in to Python 3; so there's

no need to PIP install it. As with the other modules
present, you can import the module’s function by simply entering
import math into the Shell, or as part of your code in the Editor.

Python 3.4.2 Shell
Eile Edit Shell Debug Qptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits"” or "license()" for more information.
>»> import math

P |

STEP 2 Importing the Math module will give you access to
the module’s code. From there, you can call up any

of the available functions within Math by using math, followed by
the name of the function in question. For example, enter:

math.sin(2)

This displays the sine of 2.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits” or "license()" for more information.
>>> import math

»>> math.sin(2)

0.9092974268256817

s |

n www.bdmpublications.com

STEP 3 As you will no doubt be aware by now, if you know
the name of the individual functions within the

module you can specifically import them. For instance, the Floor and
Ceil functions round down and up a float:

from math import floor, ceil

floor(1.2) # returns 1
ceil(1.2) # returns 2

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “"copyright", “credits" or “license()" for more information.
»>>> from math import floor, ceil

>>> floor(1.2)

1

>>> ceil(1.2)

2

>33

STEP 4 The Math module can also be renamed as you
import it, as with the other modules on offer within
Python. This often saves time, but don't forget to make a comment
to show someone else looking at your code what you've done:

import math as m
m.Exunci(1 23, 45)

Truncate removes the fraction

Python 3.4.2 Shell
File Edit She|l Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright"”, “"credits” or "license()" for more information.
>»> import math as m

>>> m.trunc(123.45)

123

>

STEP 5 Although it's not common practise, it is possible to
import functions from a module and rename them.
In this example, we're importing Floor from Math and renaming it
to f. Although where lengthy code is in use, this process can quickly
become confusing:

from math import floor as f
HE2)

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> from math import floor as f

>>> f(1.2)

1

>>>

sscscscssse

STEP 6

from math import *

Importing all the functions of the Math Module can
be done by entering:

While certainly handy, this is often frowned upon by the developer
community as it takes up unnecessary resources and isn’'t an
efficient way of coding. However, if it works for you then go ahead.

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.5.1] on linux

Type “copyright”, “credits" or "license()" for more information.
>>> from math import *

»>> sqri(16)

4.0

>>> cos(2)

-0.4161468365471424

2> |

sscecscecse

STEP 7 Interestingly, some functions within the Math
module are more accurate, or to be more precise are

designed to return a more accurate value, than others. For example:

s [oaly odl, oil, odly o, aily odby odb, ik, il
will return the value of 0.999999999. Whereas:
FEmnl o, <ih, oflp oilp aibp oiby odlg adhy oiby, a9

returns the value of 1.0.

Python342shell

File Edit Shell Debug Options Windows Help

<Using the Math Module

$00600

STEP 8

precise values:

For further accuracy, when it comes to numbers the
exp and expm1 functions can be used to compute

from math import exp, expml
exp(le-5) - 1 # value accurate to 11 places
expml (1e-5) # result accurate to full precision

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.
>>> from math import exp, expmi

>>> exp(1e-5) - 1

1.0000050000069649e-05

>>> expmi(1e-5)

1.0000050000166668e-05

>>> |

STEP 9 This level of accuracy is really quite impressive, but
quite niche for the most part. Probably the two
most used functions are e and Pi, where e is the numerical constant
equal to 2.71828 (where the circumference of a circle is divided by
its diameter):

import math
print (math.e)
print (math.pi)

Python 3.4.2 Shell

File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright", “credits" or “license()" for more information.
>>> import math

>>> print(math.e)

2.718281828459045

>>> print(math.pi)

3.141592653589793

>>> |

sessse

STEP 10 The wealth of mathematical functions available
through the Math module is vast and covers

everything from factors to infinity, powers to trigonometry and
angular conversion to constants. Look up https://docs.python.org/3/
library/math.html# for a list of available Math module functions.

9.2.4. Angular conversion

[p—
Comert angle x ffom radans o degrees.

sach. radians(x)
Conven angle x om dograes to radians

9.2.5. Hyperbolic functions

Hyparbole

[
Rotun e iverss hyperbolc cosine of x

sach. asinh(s)
Rotum e ivorsa hyperboc s of

acn. atanh()

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright”, “credits” or "license()" for more information.
>>> from math import *

#3% sam([.1. .1, 0. 1. T oML R SN L 1))
0.9999955599959999

>u5 Femf L1 Ve o1 =T T <% 1e oY ale 2110
1.0

22>

sach. 3inh(x)
Rotuen the hyperbolc s of x

2acs. tanh(s)
Rtuen e hyporbolc tangentof x

9.2.6. Special functions

P)
Rotum o oo tachon st ¢

www.bdmpublications.com

Using Modules

Random Module

The Random module is one you will likely come across many times in your Python

programming lifetime; as the name suggests, it's designed to create random numbers
or letters. However, it's not exactly random but it will suffice for most needs.

RANDOM NUMBERS

There are numerous functions within the Random module, which when applied can create some interesting and very useful

Python programs.

STEP 1 Just as with other modules you need to import
random before you can use any of the functions
we're going to look at in this tutorial. Let's begin by simply printing a
random number from 1 to 5:

import random
print (randomint (0,5))

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “copyright”, “credits" or “license()" for more information.

>>> import random

>>> print(random.randint(0,5)) ‘
4

>>>

In our example

STEP 2
the number four

File Edit Shell Debug Options Windows Help
was returned. However, enter Do o rar, QethS 0T
the print function a few more
times and it will display different
integer values from the set of
numbers given, zero to five. The
overall effect, although pseudo-
random, is adequate for the
average programmer to utilise in
their code.

Type “copyright”, "credits” or “license()"
>>> import random

>>> print(random.randint(0,5))
:» print(random.randint(0.5))
>>> print(random.randint(0.5))
:» print(random.randint(0,5))
3» print(random.randint(0.5))
f» print(random.randint(0,5))
:» print(random.randint(0.5))
>>> print(random.randint(0,5))
z» print(random.randint(0,5))

55|

essscscee

STEP 3 For a bigger set of numbers, including floating
point values, you can extend the range by using the

multiplication sign:

import random

print (random.random() *100)

Will display a floating point number between 0 and 100, to the tune
of around fifteen decimal points.

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Al
[GCC 4.9.1] on linux

Type "copyright”, "credits" or "license()" for more information.

>>> umport random

>>> print(random.random() *100)

38.210096715240006 I
>>> |

m www.bdmpublications.com

(Syp =28 However, the Random module isn't used exclusively
for numbers. You can use it to select an entry from a

list from random, and the list can contain anything:

import random

random.choice ([“Conan”, “Valeria”, “Belit”])

This will display one of the names of our adventurers at random,
which is a great addition to a text adventure game.

Python 3.4.2 Shell
Eile Edit Shell Debug Options Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) _!l
'

[6CC 4.9.1] on linux

Type “copyright”, “"credits” or "license()" for more information.
>>> import random

>>> random.choice(["Conan”, “Valeria”, “Belit"])

‘Conan”*

>>> |

|
| 1

STEP 5 You can extend the previous example somewhat by
having random.choice() select from a list of mixed

variables. For instance:

import random

lst=[“David”, 44, “BDM Publications”,
*pi¥, True, 3.14, *Python”]
rnd=random.choice (1st)

print (rnd)

BRAEm23Y

Python 3.4.2 Shell
Eile Edit Shell Debug QOptions Windows Help ‘

Python 3.4.2 (default, Oct 19 2014, 13:31:11) at
[GCC 4.9.1) on linux
Type "copyright”, "credits" or "license()" for more information.

>>> import random

>>> lst=["David”, 44, "BOM Publications™, 3245.23, "Pi", True, 3.14, "Python"]
>>> rnd=random.choice(lst)

>>> print(rnd)

3245.23

>>>

STEP 6 Interestingly, you can also use a function within the
Random module to shuffle the items in the list, thus

adding a little more randomness into the equation:

random. shuffle (1lst)
prainE(iisE)

This way, you can keep shuffling the list before displaying a random
item from it.

Python 3.4.2 Shell - 0
Elle Edit She|l Debug QOptions Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1) on linux

x = 'l
-
[

Type "copyright", "credits" or "license()" for more information.

>>> import random

>>> lst=["David", 44, "BDM Publications"”, 3245.23, "Pi", True, 3.14, "Python"]
>>> rnd=random.choice(lst)

>>> print(rnd)

3245.23

>>> random.shuffle(lst)

>>> print(lst)

[3245.23, 44, 'David', 'Python', 'Pi', True, 3.14, 'BDM Publications']

>>> random.shuffle(lst)
>>> print(lst)
[44, 'BDM Publications', True, 3245.23, 'Pi’,

‘Python’, 3.14,
>>> |

‘David’)

[L__I

©000

STEP 7

import random

lst=[[i] for I in range (20)]
random. shuffle (1lst)

print (1st)

Using shuffle, you can create an entirely random list
of numbers. For example, within a given range:

Keep shuffling the list and you can have a different selection of
items from 0 to 20 every time.

- -—
Python 3.4.2 Shell = du] t3
File Edit Shell Debug Options Windows Help J:
Python 3.4.2 (default, Oct 19 2014, 13:31:11) —-'

[GCC 4.9.1] on linux
Type “copyright", “credits" or “license()" for more information.

>>> import random L
>>> 1st=[[i] for 1 1n range(20)]

>>> random.shuffle(1lst) I
>>> print(lst)

[[11], [12]. [6j. [s1. [13]. [1].

’ [151. [191. [3]. [2].
8. [17). (7). (9. [14], (01]
> |

[16]. [10]. [4]. [8]. [1

$000

STEP 8

import random
for i in range(10):
print (random.randrange (0,

You can also select a random number from a given
range in steps, using the start, stop, step loop:

2160, 7))

Results will vary but you get the general idea as to how it works.

— —
Python 3.4.2 Shell — =)
Eile Edit Shel Debug Options Windows Help |
Python 3.4.2 (default, Oct 19 2014, 13:31:11) a1

[6GCC 4.9.1] on linux
Type “copyright”, "credits” or "license()" for more information. o
>>> import random
>>> f i 1in range(10):

print(random.randrange(0. 200, 7))

154 =

119

161
168
168
182
126

| N |

<Random Module

STEP 9 Let's use an example piece of code which flips a
virtual coin ten thousand times and counts how

many times it will land on heads or tails:

import random
output={“Heads”:0, “Tails”:0}
coin=1ist (output.keys())

for i in range(10000) :
output [random.choice (coin)] +=1

print (*Heads:”, output [“Heads”])
print (“Tails:”, output[“Tails”])

e [dn shel Qeboq Qptens Wndews

PyThon 3.4.2 (GRTaUTT, 0cT 19 2018, 133N

1€ 4.9.1] on Tanux

Typs “copyright:: “credits® or *license()® for more information.
REstanr

ki

i TG 33

STEP 10 Here's an interesting piece of code. Using a text
file containing 466 thousand words, you can pluck
a user generated number of words from the file (text file found at:
www.github.com/dwyl/english-words):

import random

print (“ss>>es>srs>>Random Word Finderccs<c<e<gsc<”)
print (“\nUsing a 466K English word text file I can
pick any words at random.\n”)

wds=int (input (“\nHow many words shall I choose?
\\))

with open (“/home/pi/Downloads/words.txt”, “rt”) as

&

words = f.readlines()
words = [w.rstrip() for w in words]
prigE{y e 7
for w in random.sample (words, wds) :
print (w)
PEInE Y- e e #}

Fle EGU shel Debug Options windows e | Elc Eot Famot Bun Gptions Windows Hop
5 : EE —
<l x
opyTight”.

Using 460K English word text file T can pick any words at random

apen(=/home/pi/enlo
words = .readlines()
worde = Iw.retrip() for w

ads/mords. e, re) a6 f1
Wow many words shall I choose? 12 nordel
printt)

W i random. smple(nords. wds):
print(w)

print()

www.bdmpublications.com

m Using Modules>

Tkinter Module

While running your code from the command line, or even in the Shell, is perfectly fine,

Python is capable of so much more. The Tkinter module enables the programmer to set
up a Graphical User Interface to interact with the user, and it's surprisingly powerful too.

GETTING GUI

Tkinter is easy to use but there's a lot more you can do with it. Let's start by seeing how it works and getting some code into it.
Before long you will discover just how powerful this module really is.

STEP 1 Tkinter is usually built into Python 3. However, if it's
available when you enter: import tkinter, then
youneed topip install tkinter from the command prompt.
We can start to import modules differently than before, to save on
typing and by importing all their contents:

import tkinter as tk
from tkinter import *

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) -
[GCC 4.9.1] on linux

Type “copyright", “credits" or "license()" for more information.
>>> import tkinter as tk

>>> from tkinter import *

55> |

p &

STEP 2 It's not recommended to import everything from a
module using the asterisk but it won't do any harm

normally. Let’s begin by creating a basic GUI window, enter:
wind=Tk ()

This creates a small, basic window. There’s not much else to do at
this point but click the X in the corner to close the window.

e, J— W
Python 3.4.2 Shell =1 S
File Edit Shell Debug Options Windows Help JL
Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux
Type “copyright”, “credits" or “license()" for more information.
>>> import tkinter as tk H’
>>> from tkinter import *
>>> wind=Tk()
tk - o x

AT

;

m www.bdmpublications.com

STEP 3 The ideal approach is to add mainloop() into the
code to control the Tkinter event loop, but we'll
get to that soon. You've just created a Tkinter widget and there are
several more we can play around with:

btn=Button ()
btn.pack ()
btn[“text”]="Hello everyone!”

The first line focuses on the newly created window. Click back into
the Shell and continue the other lines.

Python 3.4.2 Shell - O %
Eile Edit Shell Debug Options Windows Help ‘
Python 3.4.2 (default, Oct 19 2014, 13:31:11)
[GCC 4.9.1] on linux
Type "copyright”, "credits" or "license()" for more information.
>>> import tkinter as tk |
>>> from tkinter import *
>>> btn=Button()
>>> btn.pack()
>>> btn[“text"]="Hello everyone!"
>>>

=
Hello everyone!

STEP 4

You can combine the above into a New File:

import tkinter as tk
from tkinter import *
btn=Button ()
btn.pack ()
btn[“*text”]="Hello everyone!”

Then add some button interactions:

def click():
print (“You just clicked me!”)
btn[“command”]=click

[tkintercode1.py - /home/pi/Docume...ython Code/tkintercodel.py (3.4.2) - o x
|Ele Edit Format Run Options Windows Help

|| import tkinter as tk
from tkinter import *

|| btn=Button()
btn.pack()
btn[“text"]="Hello everyone!"

|| def click():
print(“"You just clicked me!™)

btn[“command”)=click

STEP 5 Save and execute the code from Step 5 and a
window appears with ‘Hello everyone!” inside. If you

click the Hello everyone! button, the Shell will output the text ‘You
just clicked me!'. It's simple but shows you what can be achieved
with a few lines of code.

Python 3.4.2 (default, Oct 19 2014, 13:31:11) =
[GCC 4.9.1] on linux
Type "copyright”, "credits” or "license()" for more information.
>>> RESTART

>>>

>>> You just clicked me!

You just clicked me!

You just clicked me!

Hello everyone!

STEP 6 You can also display both text and images within
a Tkinter window. However, only GIF, PGM or PPM
formats are supported. So find an image and convert it before using
the code. Here’s an example using the BDM Publishing logo:

from tkinter import *

oot = Tk}

logo = PhotoImage (file="/home/pi/Downloads/BDM logo.
gif")

wl = Label (root, root.title(“BDM Publications”),

image=logo) .pack (side="right")

content = From its humble beginnings in 2004,
the BDM brand quickly grew from a single publication
produced by a team of just two to one of the biggest
names in global bookazine publishing, for two simple
reasons. Our passion and commitment to deliver the

wirn

very best product each and every volume. While

the company has grown with a portfolio of over 250
publications delivered by our international staff,
the foundation that it has been built upon remains
the same, which is why we believe BDM isn’t just

the first choice it’s the only choice for the smart

consumer S ez
Label (root,
justify=LEFT,
padx = 10,
text=content) .pack (side="1left")
root .mainloop ()

w2 =

$000

STEP 7

The previous code is "
quite weighty, mostly -
due to the content
variable holding a part
of BDM's About page
from the company

Fie Edt Fomat Fun Optins Windows Help
Thinter g

Foot = Tk()
1ogo + Photolmage(f1les /he

%2 = Labal(root,
SJustify-LEFT.
pagx = 10.
text-content). pack(side="left")

root.nainloop()

(Tkinter Module

©000

STEP 8 You can create radio buttons too. Try:

from tkinter import *

ook = Tk}

v = IntVar()

Label (root, root.title(“Options”), text=""”Choose
a preferred language:""",
justify = LEFT, padx =
Radiobutton (root,
text="Python”,
padx = 20,
variable=v,
value=1) .pack (anchor=W)
Radiobutton (root,
text="C++",
padx = 20,
variable=v,
value=2) .pack (anchor=W)

20) .pack ()

mainloop ()

©000

STEP 9

from tkinter import *
root = Tk()

You can also create check boxes, with buttons and
output to the Shell:

def var_states():
print (“Warrior: %d,\nMage: %d” %
var2.get()))

(varl.get (),

Label (root, root.title(“Adventure Game”),
text=">>>>>>>>>>Your adventure role<<<<<<<<<<”).
grid(row=0, sticky=N)

varl = IntVar()

Checkbutton (root, text="Warrior”,
grid(row=1, sticky=W)

IntVar ()

Checkbutton (root, text="Mage”, variable=var2).
grid(row=2, sticky=W)

Button(root, text='Quit’, command=root.destroy) .
grid(row=3, sticky=W, pady=4)

Button (root, text=’Show’, command=var states).
grid(row=3, sticky=E, pady=4)

variable=varl) .

var2 =

mainloop ()
STEP 10 The code from Step 9 introduced some new
geometry elements into Tkinter. Note the
sticky=N, E and W arguments. These describe the locations of the
check boxes and buttons (North, East, South and West). The row
argument places them on separate rows. Have a play around and
see what you get.

X (VOPLLARKO). VBrZ.Eet(). Yard.get(). verd.get(). vars.get()))

). peAdromm0. stickysn)

website. You can
obviously change the
content, the root.title
and the image to suit
your needs.

From s humble baginnings in 2004,
Ehe DM e culy oo rom a i pucation produced
by g team of st two teone of he Hggest names i lobel
bookazna publishing. for two simple reeson:

Gur patsion and commemant to daiver the very best product
each and every volume.

Whil the company s gr s with a portfolio of over

250 publications delvered by our Intemational sta,

93 bee I
‘which s why we befieve BOM isrit just the first choice 2°s
the ol chasce for the smart consumer.

Stickysi, padyes)
tacky-E. pady~4)

.......... o advanturs ol << < sess

www.bdmpublications.com _

E Using Modules>

Pygame Module

We've had a brief look at the Pygame module already but there's a lot more to it that

needs exploring. Pygame was developed to help Python programmers create either

graphical or text-based games.

PYGAMING

Pygame isn’t an inherent module to Python but those using the Raspberry Pi will already have it installed. Everyone else will

need to use: pip install pygame from the command prompt.

STEP 1 Naturally you need to load up the Pygame modules
into memory before you're able to utilise them.
Once that's done Pygame requires the user to initialise it prior to
any of the functions being used:

import pygame
pygame.init ()

Python 3.4.2 Shell
File Edit Shell Debug Options Windows Help |

Python 3.4.2 (default, Oct 19 2014, 13:31:11) I
[6CC 4.9.1]1 on linux

Type “"copyright”, “credits" or “"license()" for more information.
>>> import pygame (9
>>> pygame.init()
(6, 0)

>>>

©000

gamewindow=pygame.display.set_mode ((800,600))
pygame.display.set caption(“Adventure Game”)

Let's create a simple game ready window, and give
it a title:

You can see that after the first line is entered, you need to click back
into the IDLE Shell to continue entering code; also, you can change
the title of the window to anything you like.

m www.bdmpublications.com

STEP 3 Sadly you can't close the newly created Pygame
window without closing the Python IDLE Shell,
which isn’t very practical. For this reason, you need to work in the
editor (New > File) and create a True/False while loop:

import pygame
from pygame.locals import *
pygame.init ()

gamewindow=pygame.display.set mode ((800,600))
pygame.display.set caption(“Adventure Game”)

running=True

while running:
for event in pygame.event.get():
if event.type==QUIT:
running=False
pygame.quit ()

File Edit Format Rum Options Windows Help

import pygame
from pygame.locals import *
pygame. init()

gamewindow=pygame .display.set_mode((800,600))
pygame.display.set_caption("Adventure Game")

running=True

while running:
for event in pygame.event.get():
1T event.type==QUIT:
running=rFalse
pygame.quit()

cesee

STEP 4 If the Pygame window still won't
close don't worry, it's just a

discrepancy between the IDLE (which is written
with Tkinter) and the Pygame module. If you
run your code via the command line, it closes
perfectly well.

to use and we need to set some parameters for pygame:

import pygame
pygame.init ()

running=True
while running:

gamewindow=pygame.display.set_mode ((800,600))
pygame.display.set caption(“Adventure Game”)
black=(0,0,0)

white={(255,255 255)

©60006000000000000000000000600000000808000000000

<Pygame Module

v

pi@raspberrypi: ~/Documents/Python Code
File Edit Tabs Help

00000000080 008000000000000000000

gy =200 You're going to shift the code around a bit now,
running the main Pygame code within a while loop;

it makes it neater and easier to follow. We've downloaded a graphic

img=pygame.image.load (“/home/pi/Downloads/
spritel.png”)

def sprite(x,y):

gamewindow.blit (img, (x,y))

x=(800%0.45)
y=(600%0.8)

gamewindow.fill (white)
sprite(x,y)
pygame.display.update ()

for event in pygame.event.get () :
if event.type==pygame.QUIT:
running=False

pygamel py - /home/pi/Documents/Python Code/pygamel.py (342) - o x
Elle Edit Format Run Options Windows Help

pygame Al
pygame. locals re *
pygame.1nit()
running=
running:
gamewindow=pygame .display.set_mode((800,600))
pygame.display.set_caption(“Adventure Game™)
black=(0,0,0)
i
ne

= x

f sprite(x.y):
gamewindow.blit(img. (x.y))

x=(800*0.45)
¥=(600%0.8)

white=(255,255,255)

img=pygame . image. load(*/home/pi/Downloads/spr
gamewindow. fill(white)

sprite(x,

pygame.display.update()

for event in pygame.event.get():
event. type==QUIT:
running=ra
pygame.quit()

lin-7ical

©006000000000000000000000000008000000000000000000000000000000000000 00000008

STEP 6 Let's quickly go through the code changes. We've
defined two colours, black and white together

with their respective RGB colour values. Next we've loaded the

limport pygame
from pygame.locals import *
pygame.init()

running=True
ihile running:

gamewindow=pygame .display.set_mode((800.600))
pygame.display.set_caption(~Adventure Game")
black=(0,0,0)

white=(255,255,255)

img=pygame. image. load(" /home/pi/Downloads/spritel.png")

def sprite(x.y):
gamewindow.blit(img, (x.y))

downloaded image called sprite1.png and allocated it to the
variable img; and also defined a sprite function and the Blit function
will allow us to eventually move the image.

x=(B00*0.45)
y=(600%0.8)

gamewindow. f1ll({white)
sprite(x.y)
pygame.display.update()

event in pygame.event.get():

1T event.type==QUIT:
running=rFalse
pygame.quit{)

www.bdmpublications.com 101

Using Modules

$ 600000000000 00080000

STEP 7 Now we can change the code around again, this
time containing a movement option within the
while loop, and adding the variables needed to move the sprite
around the screen:

import pygame
from pygame.locals import *
pygame.init ()

running=True

gamewindow=pygame.display.set mode ((800,600))
pygame.display.set caption(“Adventure Game”)
black=(0,0,0)

white= (255,255,255}

img=pygame.image.load (“/home/pi/Downloads/spritel.
png”)

def sprite(x,y):

gamewindow.blit (img, (x,y))

x=(800%0.45)
y=(600%0.8)

xchange=0

imgspeed=0

while running:
for event in pygame.event.get() :
if event.type==QUIT:
running=False

if event.type == pygame.KEYDOWN:
if event.key==pygame.K LEFT:
xchange=-5
elif event.key==pygame.K RIGHT:
xchange=5
if event.type==pygame.KEYUP:
if event.key==pygame.K LEFT or event
key==pygame.K RIGHT:
xchange=0

x += xchange

gamewindow.fill (white)
sprite(x,y)
pygame.display.update ()

pygame.quit ()

. =
Adventure Game

pygame1.py - /home/pi/Documents/Python Code/pygamel.py (3.4.2)
Ele Edit Format Run Options Windows Help

1mport pygame
from pygame.locals import *
pygame. 1nit()

running=1rue

“'l gamewindow=pygame .display.set_mode((800,600))
pygame.display.set_caption(“Adventure Game")
black=(0,0,0)
white=(255,255,255)
img=pygame. image. load(" /home/pi/Downloads/spritel.png”) ‘

.
. jef sprite(x,y):
gamewindow.blit(img, (x.y))

x=(800%0.45)
¥=(600%0.8)

imgspeed=0

hile running:
for event in pygame.event.get():
if event.type==QUIT:
running=ralse

xchange=0 ‘
|
|

if event.type == pygame.KEYDOWN:
if event.key==pygame.K_LEFT:
xchange=-5
elif event.key==pygame.K_RIGHT:
xchange=5
if event.type==pygame.KEYUP:
1f event.key==pygame.K_LEFT or event.key==pygame.K_RIGHT:
xchange=0

x += xchange
gamewindow. fill(nhite)
sprite(x.y)
pygame.display.update()

pygame.quit()

©0000000000000000000000000000000000000600000000000000000000000000006000000000000000000000000000006000000000000000000000800000000000

STEP 8 Copy the code down and using the left and right arrow keys on the keyboard you can move your sprite across the bottom of
the screen. Now, it looks like you have the makings of a classic arcade 2D scroller in the works.

img pygame Al
rom pygame.locals import *

fro
pygame.init()
running=True

"
gamewindow=pygame.display.set_mode((800,600))

pygame.display.set_caption(“Adventure Game")

black=(0,0,0)

white=(255,255,255)

img=pygame. image. load(“/home/pi/Downloads/spritel.png")

jef sprite(x.y):
gamewindow.blit(img. (x.y))

xchange=0
imgspeed=0

b
x=(800%0.45)
y=(600%0.8)

102 www.bdmpublications.com

+hile running: —‘
for event in pygame.event.get():]
i 5 =QUIT: |
if event.type == pygame.KEYDOWN:
1f event.key==pygame.K_LEFT:
xchange=-5
elif event.key==pygame.K_RIGHT:
xchange=5
if event.type==pygame.KEYUP:
1f event.key==pygame.K_LEFT or event.key==pygame.K_RIGHT:
xchange=0

x += xchange
gamewindow. fill(white)

sprite(x.y)
pygame.display.update()

pygame.quit()

©000

STEP 9 You can now implement a few additions and utilise
some previous tutorial code. The new elements are
the Subprocess module, of which one function allows us to launch a

second Python script from within another; and we're going to create a
New File called pygametxt.py:

import pygame
import time

import subprocess | Ble gdt Form

<Pygame Modules

©00600800000000

pygame.display.£flip()
clock.tick (60)
continue

break

pygame.quit ()

pygametxt.py - /nome/pi/Documents/Python Code/pygametxt py (3.4.2)
at Run QOptions Windows Help

©
<
]
]
E

pygame.init ()

i subpro
screen = pygame.display.set_mode ((800, 250)) [pygame.init()
clock = pygame.time.Clock () clock = pygam
font = pygame

font = pygame.font.Font (None, 25)

pygame. time.s

pygame.time.set timer (pygame.USEREVENT, 200) | *$;u§mrﬂw(wnn
= i =
letter text:
def text generator (text) : ‘ asidatien
tmp = G tmp
. . 3 DynamicText(object):
for letter in text: ef __init__(self, font, text, pos, autoreset=false):
self.done = False
tmp += letter self.font = font
. self.text = text
sz Jig=eEs 1= Y 0 self._gen = text_generator(self.text)
el self.pos = pos
yie tmp self.autoreset = autoreset
self.update()
class DynamicText (object) : f reset(self):
g self._gen = text_generator(self.text)
def init (self, font, text, pos, self.done = Fals
omm— et self.update()
autoreset=False) : iz
f update(self):
self.done = False self .done:
: self.rendered = self.font.render(next(self._gen), . (0, 128, 0))
self.font = font SSHRLiastion:
self.done =
self. text = Eext time.sleep(10)) " A i .)
(1f ¢ t) subprocess.Popen("python3 /home/pi/Documents/Python\ Code/pygamel.py 1", shell=True)
self. gen = text generator(self.tex
self.pos = pos lef draw(self, screen):

self.autoreset = autoreset

text=("A long time ago, a barbarian strode from the frozen north. Sword in hand...")
self.update () message = DynamicText(font. text, (65, 120). autoreset=True)
def reset (self): event 11 pygame.event.get():
event.type == pygame.QUIT:
self ._gen = text_ generator (self.text) event.type == pygame.USEREVENT: message.update()

self.done = False ”'écreen.hll(pygame.color.Color(black'))
moconnn Ao zczanny

|| screen = pygame.display.set_mode((800, 250))

screen.blit(self.rendered, self.pos)

cess

e. time.Clock()
.font.Font(. 25)

et_timer(pygame.USEREVENT, 200)

self.update ()

A
|Ln: 18]Col: 0

def update (self) :
if not self.done:
try: self.rendered = self.font.
render (next (self. gen), True, (0, 128, 0))
except Stoplteration:
self.done = True
time.sleep(10)
subprocess . Popen (“python3 /home/pi/Documents/
Python\ Code/pygamel.py 1”, shell=True)

def draw(self, screen):
screen.blit (self.rendered, self.pos)

text=("A long time ago, a barbarian strode from the
frozen north. Sword in hand...”)

message = DynamicText (font, text, (65, 120),
autoreset=True)

while True:
for event in pygame.event.get():
if event.type == pygame.QUIT: break
if event.type == pygame.USEREVENT: message.
update ()
elee:
screen.fill (pygame.color.Color (‘black’))
message.draw (screen)

$000

STEP 10 When you run this code it will display a long,
narrow Pygame window with the intro text
scrolling to the right. After a pause of ten seconds, it then launches
the main game Python script where you can move the warrior sprite

around. Overall the effect is quite good but there’s always room
for improvement.

%

www.bdmpublications.com 103

m Using Modules>

Basic Animation

Python's modules make it relatively easy to create shapes, or display graphics and
animate them accordingly. Animation though, can be a tricky element to get rightin

code. There are many different ways of achieving the same end result and we'll show
you one such example here.

LIGHTS, CAMERA, ACTION

The Tkinter module is an ideal starting point for learning animation within Python. Naturally, there are better custom modules
out there, but Tkinter does the job well enough to get a grasp on what's needed.

STEP 1

to animate:

Let's make a bouncing ball animation. First, we
will need to create a canvas (window) and the ball

from tkinter import *
import time

gui = Tk()

gui.geometry (“800x600")
gui.title(“Pi Animation”)

canvas = Canvas (gui,
width=800,height=600,bg="white’)
canvas.pack ()

balll = canvas.create oval(5,5,60,60, fill="red”)

gui.mainloop ()

STEP 2 Save and Run the code. You will see a blank window
appear, with a red ball sitting in the upper left
corner of the window. While this is great, it's not very animated.
Let's add the following code:

a=>5
E-:

for x in range(0,100) :
canvas.move (balll,a,b)
gui.update ()
time.sleep(.01)

step2.py - /home/pi/Documents/step2.py (3.5.3) - o
File Edit Format Run Options Window Help
from tkinter import *
import time
gui = Tk()

| gui.geometry("800x600")
| gui.title("Pi Animation")

canvas = Canvas(gui, width=800, height=600, bg='white')
‘ canvas.pack()

balll = canvas.create_oval(5,5,60,60, fill="red')

"o

a=>5
b=5
for x in range(0,100):
canvas.move(balll,a,b)
gui.update()
‘ time.sleep(.01)
| gui.mainloop()

m www.bdmpublications.com

STEP 3 Insert the new code between the ball1
= canvas.create oval(5,5,60,60,
fill='red’) lineandthe gui.mainloop () line.Save itand
Run. You will now see the ball move from the top left corner of the
animation window, down to the bottom right corner. You can alter
the speed in which the ball traverses the window by altering the
time.sleep(.01) line.Try (.05).

Pi Animation -

sssececscscecscsscsssssssce esesccsssccses secece

STEP 4 The canvas .move (balll, a,b) lineisthe part
that moves the ball from one corner to the other;
obviously with both a and b equalling 5. We can change things around
a bit already, such as the size and colour of the ball, with the line:
balll = canvas.create oval(5,5,60,60, £ill='red’)
and we can change the values of a and b to something else.

balll = canvas.create_oval(7,7,60,60, fill="red')

a

a
b 3

for x in range(®,108):
canvas.move(balll,a,b)
gul.update()
time.sleep(.85)

©0008000000

xa = 5
ya = 10

Let's see if we can animate the ball so that it bounces
around the window until you close the program.

while True:
canvas.move (balll,xa,ya)
pos=canvas.coords (balll)

if pos[3] »>=600 or pos[l] <=0:
ya = -ya

if posl2] >=800 or poall] ==0:
Xa = -xa

gui.update ()
time.sleep(.025)

$000

STEP 6 €l :
the code from Step 5 in its place; again, between the

balll = canvas.ereate oval(5,5,60,60, fill="red’)
and the gui .mainloop () lines. Save the code and Run it as normal.
If you've entered the code correctly, then you will see the red ball
bounce off the edges of the window until you close the program.

Remove the code you entered in Step 2 and insert

xa -5
ya = 10

STEP 7 The bouncing animation
takes place within the

While True loop. First, we have the values
of xa and xy before the loop, both of 5 and
10. The pos=canvas .coords (balll) line
takes the value of the ball’s location in the
window. When it reaches the limits of the
window, 800 or 600, it will make the values
negative; moving the ball around the screen.

canvas..move(balll, xa, ya)
pos=canvas. coords(ball1)
Ppos[3] >=608 or pos[1] <=u:

ya = -ya
pos([2] >-866 o pos[6] <o
xa = xa

gui _update()
time.sleep(.625)

STEP 8 Pygame, however, is a much better module at
producing higher-end animations. Begin by creating

a New File and entering:

import pygame
from random import randrange

MAX STARS = 250
STAR _SPEED = 2

def init stars(screen):
wr# Create the starfield “~~
global stars
sEars =N
for i in range (MAX STARS) :

A star is represented as a list with this

format: [X,Y]
star = [randrange (0,screen.get_width() - 1),
randrange (0, screen.get_height () - 1)]

stars.append (star)

def move_and draw_stars (screen) :
w7 Move and draw the stars “"”
global stars

for star in stars:

star[1l] += STAR_SPEED

if star[l] >= screen.get height ()
grar1i] = @
star[0] = randrange (0,639)

screen.set at(star,;(255,255,255))

Basic Animation

©00600000000000600000000000

STEP 9 Now add the following:

def main() :
pygame.init ()
screen = pygame.display.set _mode ((640,480))
pygame.display.set caption(“Starfield
Simulation”)
clock = pygame.time.Clock ()

init_stars (screen)

while True:
Lock the framerate at 50 FPS
clock.tick (50)

Handle events
for event in pygame.event.get () :
if event.type == pygame.QUIT:
return

screen.£il1((0,0,0))
move_and_draw_stars (screen)
pygame.display.flip ()

if _ name == “_ main ”:

main ()

main():
pygame.init()
screen = pygame.display.set_mode((640, 480))
pygame.display.set_caption("St ield Sin
clock = pygame.time.Clock()

| init_stars(screen)

Lock the framerate at 50 FPS
clock.tick(50)

Handle events
event in pygame.event.get():
event.type == pygame.QUIT:

screen.fill((0,0,0))
move_and_draw_stars(screen)
pygame.display.flip()
__name__ == "__main
main()

STEP 10 Save and Run the code. You will agree that the
simulated starfield code looks quite impressive.
Imagine this as the beginning of some game code, or even the start
to a presentation? Using a combination of Pygame and Tkinter, your
Python animations will look fantastic.

| GE i o trs W o
gl Edn Shel Dobug Qptions Window Help =

pygase
Python 353 (aetault, Sap 27 7018, 17:75:39] 4 randon

randr ange

focc 6.3.0 201705161 on Lin
“Credits® or “License()" for more inforsation MAX_STARS - 250
STAR_SPEED - 2

Iype “copyright”,

el coko

www.bdmpublications.com

E Using Modules>

Create Your Own Modules

Large programs can be much easier to manage if you break them up into smaller parts

and import the parts you need as modules. Learning to build your own modules also
makes it easier to understand how they work.

BUILDING MODULES

Modules are Python files, containing code, that you save using a .py extension. These are then imported into Python using the

now familiar import command.

STEP 1 Let's start by creating a set of basic mathematics
functions. Multiply a number by two, three and
square or raise a number to an exponent (power). Create a New File
in the IDLE and enter:

def timestwo (x) :
return x * 2 File Edit Format Run Options Windows Help

def timestwo(x):
return x * 2

def timesthree (x): J

returniss >3 ‘cﬂrtMﬂhmﬂxﬁ

return x

def square (x) :
aEEibhan P 5

def square(x):
return x * x

def power(x.y):

‘ return x ** y

STEP 2

print
print
print
pEinE

def power (x,y) :
IEIEDEDEl 57 W

Under the above code, enter functions to call the
code:

(timestwo (2))
(timesthree (3))
(square (4))
(power (5,3))

Save the program as basic_math.py and execute it to get the results.
basic_math.py - /nome/pi/Docume..Python Code/basic_math.py (3.42) - B x B
File Edit Format Run Options Windows Help l

\u—w timestwo(x): Al
‘ return x * 2

def timesthree(x):

| return x (3) Save As =) ¢
| def square(x): Directory: ython Code 4| B
| return x * x

[*] dletterwrd.py
[7] Adventure.py

["] Booleantest.py

| def . T
d power(xlyz‘ [7] BoxesColours.py

|
1
yeten y [C] AlarmClock.py [] calcPi.py
print (timestwo(2)) (7] Balls.py [[] calculator.py
print (timesthree(3)) [7] basic_math.py [*] calendaryear.py
print (square(4)) [Z] bkup.py [7] cards.py
print (power(5.3))
K — »
|
File pame: m Save
Files of type: Python files (*.py.*.pyw) = | Cancel ‘ J

m www.bdmpublications.com

STEP 3 Now you're going to take the function definitions
out of the program and into a separate file.
Highlight the function definitions and choose Edit > Cut. Choose File
> New File and use Edit > Paste in the new window. You now have
two separate files, one with the function definitions, the other with
the function calls.

basic_math,py - /home/pi/Docume. ython Code/basic_math py (342) - @ x
File Edit Format Run Qptions Windows Help

Untitled

Fle Edt Format Run Options Windows Help

def timestwo(x): =
return x * 2

print (timestwo(2))
print (timesthree(3))
print (square(4))
print (power(5.3))

jef timesthree(x):
return x * 3

jef square(x):
return x * x

def power(x.y):
return x **

STEP 4 If you now try and execute the basic_math.py code
again, the error ‘NameError: name ‘timestwo' is
not defined’ will be displayed. This is due to the code no longer
having access to the function definitions.

Traceback (most recent call last):
File "/home/pi/Documents/Python Code/basic_math.py", line 3, in <module>
print (timestwo(2))
HameIError: name 'timestwo' is not defined
>>>

T L T oY
Return to

STEP 5
the newly

created window containing

the function definitions, and
click File > Save As. Name this
minimath.py and save it in the
same location as the original
basic_math.py program. Now
close the minimath.py window,
so the basic_math.py window is
left open.

©000

STEP 6

from minimath import *

Back to the basic_math.py window: at the top of the
code enter:

This will import the function definitions as a module. Press F5 to
save and execute the program to see it in action.

Python 3.4.2 Shell S basic_math py - /homa/pi/Docume. Pytl
Elo Et Shel Debug Options Windows Holp Elo Edt Format Bun Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Fi mininath .
£6¢C 4.9.1] on Linux

Type “Copyright™, "credits or ~license()" for more information.
>35 RESTART

print (timesmno(2))
print (time (
55 print (square(4))

: print (poner(5.2))
16

125
> |

STEP 7 You can now use the code further to make the
program a little more advanced, utilising the newly
created module to its full. Include some user interaction. Start by
creating a basic menu the user can choose from:

print (“Select operation.\n”)
print (*1.Times by two”)
print (*2.Times by Three”)
print (“3.Square”)

print (“4.Power of”)

choice =

input (“\nEnter choice

(1/2/3/4) :")

testmath py - /home/pi/Documents/Python Code/testmath py (34.2) - x
| Ble Edt Format Bun Options Windows Help
i| from minimath g Al

print(“Selec
print(*1

|| print(-2

Rrines ety
print("4.Power of")

|(hol:e - input(“\nEnter choice (1/2/3/4):")

©00600000000000000060000000000000000000000000000000000000060000000

numl =

Now we can add the user input to get the number

the code will work on:
int (input (“\nEnter number: “))

This will save the user-entered number as the variable num1.

- fhome/pi/Documents/Python

File Edit Format Bun Options Windows Help

| from minimath

imp

print{"Select operation.\n")
rint{"1.Times by two")
irint("2.Times by Three™)

‘ print{“3.5quare")

print{"4.Power of")

choice = input("\nEnter choice (1/2/3/4):™)

numi =

int(input("“nEnter number: "))

<Create Your Own Modules

STEP 9 Finally, you can now create a range of if statements
to determine what to do with the number and

utilise the newly created function definitions:
if choice == ‘'1':
print (timestwo (numl))
elif choige == 2%
print (timesthree (numl))
V3.
print (square (numl))

elif choice ==

elif choice == ‘4’:
num2 = int (input (“Enter second number:
print (power (numl, num2))
else:
print (*Invalid input”)

w))

testmath.py - /home/pi/Documents/Python Code/testmath.py (3.4.2)
File Edit Format Run Options Windows Help

m minimath import *

print(“Select operation.\n")
print(“1.Times by two")
print("2.Times by Three")

‘i print(“3.Square")
print("4.Power of")

choice = input("\nEnter choice (1/2/3/4):")

num1 = int(input(“\nEnter number: "))

if choice == "1':
print(timestwo(num1))

elif choice == '2':
print(timesthree(num1))

elif choice == '3':
print(square(num1))

el1f choice == "4':
num2 = int(input(“Enter second number: "))
print(power(numi, num2))

}n;)nt(“Invalid input™)

$600080000000000000000000

This passes a second number through the function definition called
power. Save and execute the program to see it in action.

Note that for the last available options, the Power
of choice, we've added a second variable, num?2.

&) Theee

wice (V2412

107

www.bdmpublications.com

' Using Modules

Python in Focus:

Artificial Intelligence

Artificial Intelligence (Al) and Machine Learning (ML) are the new hot topics of the IT
industry. Al is fast becoming the working science fiction that it has been portrayed as in

the past, and behind it is Python.

Despite how close Al and ML are, there are distinct differences

between the two technologies. Al refers to the study of how to train a

computer to accomplice the things that humans can do significantly
better and faster. Whereas, ML is the ability for a computer to learn
from its experiences, so that the outcome and performance will
eventually become more accurate and accomplished.

While different, they are both essentially discussing the same
element: training a system to learn and do things independently.
Where Al is said to lead to wisdom, ML reportedly leads to knowledge
and, thanks to Python, that gap is getting closer every day.

APPLICATIONS

Both Al and ML are hugely present in today's technology. Where,
just a few years ago, most of us associated Al with the rise of a
super-intelligent legion of killer robots, nowadays you'd be amazed
at the numerous examples of Al in your house, and even being
carried around with you.

Let's begin with the obvious use of Al and ML, the smartphone.
These devices have infiltrated most of our modern world, with
global coverage reaching 5.5 billion for 2019 and set to rise to over
6 billion by the end of 2020, it's little surprise to discover that Al and
ML are advancing in leaps and bounds.

With nearly all of the population of humanity within reach of a
smartphone, the coding behind these devices has been developed
to take individuals into account. These devices are designed to
learn what the user requires, or uses, the device for. Common
numbers called are pushed to the top of the list, in-app and in-game
advertising is moulded around our browser and search preferences,
as well as other apps we've installed in the past. And even our
voices, fingerprints and faces are stored and analysed by Al and ML
in order to recognise who we are.

- www.bdmpublications.com

DIGITAL ASSISTANTS

The rise of digital assistants has been one of the kick-starters of

Al and ML programming. Siri, Cortana, Alexa and Google Assistant
are all coded using Python, and are designed to listen, learn and
respond to what we ask of them. With Python, this level of Al is
surprisingly simple, thanks to the many libraries and customisation
of the language. These frameworks make creating Al and ML easy
for intelligent coders, cutting down on the development time in
other languages and, thanks to Python's easy to read code and
complex algorithms, these developers can devote significant time to
improving the performance and accuracy of Al.

Every time we ask one of these digital assistants for something, the
Python-driven Al code is reading our voice, determining what it is
we're asking by plucking out key words and acting on them. If we
ask for a thirty second countdown, it'll start the device's stopwatch
function; if we ask for dinner suggestions, it'll open a specific set of
web pages, and if we ask it to play some music, it'll interrogate the
available music apps to select what it is we wanted. All the time,
the Al code is being trained to listen more intently, while the ML

is learning from the Al results so that its accuracy is improved for
future questions and requests.

BEYOND THE SMARTPHONE

Consider Google, social media and the content you look up. How many times
have you entered a search string into Google, such as car parts for a Mk1
Ford Escort and, when you've opened Facebook, you suddenly find a group
suggestion of Ford Escort owners? That's Al and ML injecting themselves into
your everyday computing tasks.

Another example of Al and ML working together is Gmail's recent addition of
suggested completions for sentences you are typing. If you frequently sign
off with ‘See you soon’, or ‘All the best’, then typing ‘See’ or ‘All’ will prompt
the ML side of the equation to autofill the remainder of the words for you. All
the time, the ML is learning while the Al is telling it what to improve on.

Facial recognition is another element of Al and ML that's been the target of
the popular press for some time. Throughout 2019, facial recognition systems
on both smartphones and CCTV footage have improved dramatically.
Agencies controlling this level of Al now have the ability to single out an
individual from a crowded street and, while that's great for law and order,

it does pose a potential threat to our privacy. After all, who watches the
watcher?

Tesla's work on self-driving cars means they are getting closer to being the
norm, and it's Python along with its controlling Al and ML work that's, excuse
the pun, driving it forward. In these circumstances, Python is doing a lot
of the heavy lifting, providing the connective tissue and libraries that are
designed to implement Al and ML. In the background, you'll usually find
C++, or some other language, that's supporting the performance and
overall program in which the Al and ML are working.

While it's easy to portray a bleak Al future, let's not forget
the many great instances of Al we currently enjoy: optical
character recognition, handwriting recognition, image
processing, helping people with visual and hearing
disabilities, advancements in space exploration,
engineering improvements, conservation,
pharmaceutical and drug improvements and
greater freedom for those limited in their
ability to travel. It's not all about two Al bots
arguing about eliminating the human race.

THE FUTURE
OF Al

Whether we'll end up creating true
Al killer robots and self-aware
androids is up for debate. There are
plenty of arguments For and against
the evolution of Al, with many
believing that Al will be the worst
possible future humans can create
-worse even than nuclear war. For
the moment, however, we're at the
early stages of Al development,
but with Python's continual
advancements and improved
libraries, it may not be too long
before we've got an Al system
that's getting better by the hour.

9 3O BXew{2s0) suadadoHqL?a ;Ha Tna>R& B<
- 70B7yogaUWKMalr- ", =~eacza '"[I:3*A007" ™ O6'5E 1
[@ " 4l " Vle€nadsidm ARAON RS WO [« u X} he-—w
"i“ O]JR-add<saToPwlRag- (BREN>pnee YD
& $#{wwzan a9LdAEaRFap,ece NEN{ v B
LMo wQ fadmy > COLNRNeRR >T - v "Hp NXkibKc K«
2l 4 p «BUbD@3A@; =8I MWUaBw?r Xappul @ O/ v ace O
[mE iaoalluhlaooa 100 Zag#aa?mn l’CElHUgLDHeVUIX]
“ > 1;,11 o 81 ‘ @ \
15118555, ¢ plo
"AVBA ll |
/] 800 Baab
T I
5 B2 a0 ATy
Ui.1+9 g0 g0
, A DG 8 %11].B@|
%777 VAL v
. T8 .00 i -
/ f A‘J"]'y 1 61:1.‘
) 1 }@]
l 1 8 ;@ |
L 51091
, lgyel :
?a! B o] aQl
¢) 1
1 1 1 8 gplae i |
748 p 11 81111 |
B y lau18g0
8 11970 ggi |
SERL i
I’ 4 Q
01 ‘
]1LL
J -Ur‘ ‘:

LI >

SHARE YOUR CODE!

The code listed within this section can be downloaded
as a Python file, so you don't have to type it out. Simply
visit www.bdmpublications.com/code-portal, sign up
for access to the portal and the code is available as a
compressed file for you to download and execute.

Maybe you've written something amazing and want to
show it off; if so, why not send it in and we can add it
to the Code Portal as well as mention it via our social
media accounts.

Tell us what the code does, how it works (don't forget
to include comments in the code) and what platform to
run it on.

Send it in to: enquiries:bdmpublications.com. We look
forward to seeing what you've done.

cn W e e
. N . K | . V 5 9 Yo 9] \3 f 5 ™ m

110 www.b#mt;t]lications?eom] F g t W« L t s @ i 2] i
\ . T O B g d, d 3 “ 9 Oy 58 2
A — [0 ~ A -, o 0/ X W S

LY
[

b.

)

1%

b

O H—NFEO[]eet

~ T K
B
<[> Xz

o -

b S il
E [B [2

]

pr

'3 09

RN []—3
ﬁ/@r—x\[gj

_/H\IE’:S
<]

[" RO 3
o cOus AsSA M.
SN |

RN [N I | e T
XZ2X
o ff =
92 |
C e
o o
8 2 XK~
2@ a0
Lle=s[X~ 2ixr—e
ol ~omehe) oyl
LEXRED XN
DA RERD e =

LQ E\

[4

o c
SOC

We've included a vast Python code 1 @
repository for you to freely use in

your own programs. There's plenty in 1
here to help you create a superb piece of
programming, or extend your projectideas. % 1

)
S}
(]
(ol)
o =
S
-
(S
— (an]

%,_
(<)

g
®
o
(SEEEN S
S
#

=
— e D)

We've got code for making backups of

: your files and folders, number guessing
games, random number generators,
Google search code, game code,
animation code, graphics code, text
adventure code and even code that plays
music stored on your computer. We've
broken down some of the newer, and
extended, concepts of the code to help
you better understand what's going on.
This way you can easily adapt it to your
own uses.

SO =
(SRS

(s~
(o~ Ll o B o)

(o)
[+~
(a9
-
—_e
=
(on]

A

i et
o) s

This is an excellent resource that you
won't find in any other Python book. So

use it, take it apart, adapt it to your own
programs and see what you can create.

..

Python File Manager
Number Guessing Game
Random Number Generator
Random Password Generator
Text to Binary Convertor
Basic GUI File Browser
Mouse Controlled Turtle
Python Alarm Clock
Vertically Scrolling Text
Python Digital Clock

Playing Music with the Winsound Module

Text Adventure Script
Python Scrolling Ticker Script
Simple Python Calculator
Hangman Game Script

AT P
ww.bdm;mbl'mtiozs.c@ 6 111
[} ge @ %d
1 L4 A

s <

~
]
=<'

—_—
£ ()

& L

3]
\ [
0_/0 E W

D o) S

1>

> @) X~

N [L]=E
vy X

) =~
X < ee

2
) S~

gﬂ

P
o s

" Re QOR[N T XR[Jeel@ »

P ose3<o'"D

g
YO OREROI 23S 9 —XR|—2.o0

il

S o 22 3

e ROZNA 1 -ROM—o =[]

LS
P24

= [

This File manager program displays
a list of options that allow you to
read a file, write to a file, append to
a file,'delete a File, list the contents
of a directory and much more. It's
remarkably easy to edit and insert
into your own: code, or add to.

[

This part of the code imports the necessary modules.
The OS and Subprocess modules deal with the
operating system elements of the program.

Each def XXX() functions store the code for each
of the menu’s options. Once the code within the
function is complete, the code returns to the main
menu for another option.

This is part of the code that checks to see what OS
the user is running. In Windows the CLS command
clears the screen, whereas in Linux and macOS, the
Clear command wipes the screen. If the code tries
to run CLS when being used in Linux or macQOS, an
error occurs, which then prompts it to run the Clear
command instead.

These are the options, from 1 to 12. Each executes
the appropriate function when the relevant number
is entered.

m
www.bdm%licationk.com

o

FILEMAN.PY

Copy the code below into a New > File and save it as FileMan.py.
Once executed it will display the program title, along with the
current time and date and the available options.

import shutil
import os

import time
import subprocess

def Read():
path=input(“Enter the file path to read:”)
file=open(path,”r”)
print(file.read())
input(‘Press Enter...’)
file.close()

def Write():
path=input(“Enter the path of file to write or create:”)
if os.path.isfile(path):
print(‘Rebuilding the existing file’)
else:
print(‘Creating the new file’)
text=input(“Enter text:”)
file=open(path,”w”)
file.write(text)

def Add():
path=input(“Enter the file path:”)
text=input(“Enter the text to add:”)
file=open(path,”a”)
file.write(‘\n’'+text)

def Delete():
path=input(“Enter the path of file for deletion:”)
if os.path.exists(path):
print(‘File Found’)
os.remove(path)
print(‘File has been deleted’)
else:
print(‘File Does not exist’)

def Dirlist():
path=input(“Enter the Directory path to display:”)
sortlist=sorted(os.listdir(path))
i=0
while(i<len(sortlist)):
print(sortlist[i]+'\n’)
i+=1

def Check():
fp=int(input(‘Check existence of \nl.File \n2.
Directory\n’))
if fp==l:
path=input(“Enter the file path:”)
os.path.isfile(path)

if os.path.isfile(path)==True:
print(‘File Found’)

Python File Manager

5.List files in a directory
6.Check file existence

else: 7.Move a file
print(‘File not found’) 8.Copy a file
if fp==2: 9.Create a directory

path=input(“Enter the directory path:”)
os.path.isdir(path)

print(‘File not found’)

run=1
while(run==1):

try:

os.system(‘clear’)
except OSError:

os.system(‘cls’)
print ("\n>>>>>>>>>>Python 3 File Manager<<<<<<<<<<\n’)
print(‘The current time and date is:’,time.asctime())
print(‘\nChoose the option number: \n’)
dec=int(input(‘/’1.Read a file

10.Delete a directory
11.0pen a program

Imports

There are three modules to import here: Shutil, OS and
Time. The first two deal with the operating system and file
management and manipulation; and the Time module simply
displays the current time and date.

Note how we've included a try and except block to check if
the user is running the code on a Linux system or Windows.
Windows uses CLS to clear the screen, while Linux uses clear.

if os.path.isdir(path)==False: 12 .Exit
print(‘Directory Found’)
else: 7))]
print(‘Directory Not Found’) if dec==1:
Read()
def Move(): if dec==2:
pathl=input(‘Enter the source path of file to move:’) Write()
mr=int(input(‘l.Rename \n2.Move \n’)) if dec==3:
if mr==1: Add()
path2=input(‘Enter the destination path and file name:’) if dec==4:
shutil.move(pathl,path2) Delete()
print(‘File renamed’) if dec==5:
if mr==2: Dirlist()
path2=input(‘Enter the path to move:’) if dec==6:
shutil.move(pathl,path2) Check()
print(‘File moved’) if dec==T7: —n
Move()
def Copy(): if dec==8:
pathl=input(‘Enter the path of the file to copy or rename:’) Copy()
path2=input(‘Enter the path to copy to:’) if dec==9:
shutil.copy(pathl,path2) Makedir() |
print(‘File copied’) if dec==10: »
Removedir()
def Makedir(): if dec==11: a
path=input(“Enter the directory name with path to make Openfile() b
\neg. C:\\Hello\\Newdir \nWhere Newdir is new if dec==12:]
directory:”) exit() y
os.makedirs(path) run=int(input(“l.Return to menu\n2.Exit \n"))
print(‘Directory Created’) if run==2: _ Oq
exit() /0
def Removedir():
pthsinpup(fRiies iths path ofi Disectory if) A
treedir=int(input(‘l.Deleted Directory \n2.Delete 5
Directory Tree \n3.Exit \n’)) X
if treedir==l: D)
os.rmdir(path) 20
if treedir==2: »
shutil.rmtree(path)
print(‘Directory Deleted’)
if treedir==3:
exit()
def Openfile():
path=input(‘Enter the path of program:’)
try:
os.startfile(path)
except:

2.Write to a file
3.Append text to a file
4.Delete a file

The try block should work well enough but it's a point of
possible improvement depending on your own system.

L]
H
1l
#
f
2]
9l
A
5)
> 3
n
1
<
of
6
4
3l
L]

©00

©008

113

www.bdmpublications.com

7
v

B <\ .
E Y ar
— o X 6
18
Z »

g/ﬂﬁ\ﬁ

|
#

This is-a simple little piece of code NUMBERGUESS.PY

bUt It makes QOOd U.Se OF the Copy the code and see if you can beat the computer within

Random module, prlnt and mput, five guesses. It's an interesting bit of code that can be quite

and a Whlle l.OOp. The number OF handy when your imple'menting a combination of the Random
; module alongside a while loop.

guessescan be increased from 5

and the'random naémber range'¢an LEpAZe Fafden j—n

easily'bé'altered too. guessesUsed = 0

Name=input(‘Hello! What is your name? ‘)
number = random.randint(l, 30)
print(‘Greetings, ' + Name + ', I\'m thinking of a
number between 1 and 30.")
while guessesUsed < 5:
guess=int(input(‘Guess the number within 5 guesses...’))

Fle Edit Format Run Options Windows Help

random

guessesUsed = 0

[/o= input(Hello! what is your nane guessesUsed = guessesUsed + 1
number = random.randint(1, 30) %
print(’Greeti + Name + . I\'m thinking of a number betwe) if guess < number:
p guessesUsed < 5: = :]
- guess=int(input(’ Gue numbe hin 5 guesse print(‘Too low, try again.’)
guessesUsed = guessesused + 1 .
] uess < number: if guess > number:
5 guess > mber: print(‘Too high, try again.’)
rint('Too try again =
€ sy L apee if guess == number:
|:| guess == number: break
uessesUsed =)m(uessesUsed) = — —
= print(ve O Nasd v 71 You gmaned Gorreceiy if guess == number:
guess 1~ nunber: X guessesUsed = str(guessesUsed)
number = ;u(num Er) .
— print(Sor guesse e number I was thinking of print(‘Well done, ' + Name + ‘! You guessed
D correctly in ' + guessesUsed + ‘' guesses.’)
4 — (& i —B
Python 3.4.2 Shell if guess != number:
M Eile Edit Shell Debug Options Windows Help A number = str(number)
] Python 3.4.2 (dsfaul. Oct 19 2014, 13:31:11) print(‘Sorry, out of guesses. The number I was
.9.1] on Linux
Type "Copyright”, “credits” or “license()" for more infornation. thinking of is ' + number)
>>> == REST/ -
)ello' that is your name? David
6] zree(m\gs,tnavlé. I'm rmnzmg of a number between 1 and 30. P
QR cc=: the rumber within 5 guesses. .26 Although thisis a reasonably easy to follow program, there are
Too high, try again. e 7
Suess the rumber within 5 guesses....20 some elements to the code that are worth pointing out. To begin
Guess the number within 5 guesses...15 with, you need to import the Random module, as you're using

\uelll done, David! You guessed correctly in 3 guesses.

random numbers within the code.

This section of the code creates the variables for the number
of guesses used, along with the name of the player, and also

File Edit Format Run Options Windows Help

randaa : sets up the random number between 1 and 30. If you want a
et (el ur name ‘ wider range of random number selection, then increase the
number = random. randlnt“ 30) . U
prine("Greetings. " + ame + thinking of '@ nusber Getmen 1 and 30 number=random.randint(1, 30) end value of 30; don’t make

guessesUsed < 5: i % ; 5
guess=int(input(number within 5 guesses it too high though or the player will never be able to guessit.
guessesUsed = guessesused 1 i X

v If the player guesses too low or too high, they are given the

e trv e appropriate output and asked to try again, while the number

| of guesses is less than five. You can also increase the number of

guess == number: 3 4 5
Buessesused = str(guessestsed) guesses from 5 by altering the while guessesUsed < 5: value.
print(€ Nam: You orrectly in ' + guessesUsed +

gﬁf.ﬁi&’-"f??fﬁmbem 3 If the player guessed the correct number then they are given a
print(pesses. he: umber % v - tiinklng ‘well done’ output, along with how many guesses they used up.

If the player runs out of guesses, then the game over output is
displayed instead, along with revealing the number the computer
was thinking of. Remember, if you do alter the values of the
random number chosen by the computer, or the number of
guesses the player can take, then along with the variable values,
you also need to amend the instructions given in the print
statements at the start of the code.

EROIZIS D —Xi|—_Boe =

a]

f
14 www.bdm%licationk.com
) 2

1

Number Guessing Game é‘

Python 3.4.2 Shell 0

pi@raspberypi: ~/Documents/Python Code - o x Y S e A Y e i
t Tabs Hel 6cC 4.9.11 on linw
I{
i e

as follows

Endurance: 4
Combat Rating: §
6

bat Rating: 20
0

RESTART

T 7a ke 4|

$600000000060000000000000000000000000000000060000000000000000000000000600000000000000060000000000600000000000000000000000000000000
.

Code Improvements

Since this is such as simple script to apply to a situation, there's For example, as per the screenshot provided, you could use
plenty of room to mess around with it and make it more something along the lines of:

interesting. Perhaps you can include an option to take score, the

best out of three rounds. Maybe an elaborate way to congratulate Endurance=0

the player for getting a ‘hole in one’ correct guess on their first try. CR=0

Luck=0

Endurance = random.randint(l, 15)

CR = random.randint(l, 20)

Luck = random.randint(l, 10)

Moreover, the number guessing game code does offer some room
for implementing into your code in a different manner. What
we mean by this is, the code c'an pe used to rgtrieve arandom e nEIYour chATACTer’s Stats are wa followsiin")
number between a range, which in turn can give you the start of a Print(“Endurance:”, Endurance)
character creation defined function within an adventure game. Print(“Combat Rating:”, CR)

Print(“Luck:”, Luck)
Imagine the start of a text adventure written in Python, where
the player names their character. The next step is to roll the
virtual random dice to decide what that character’s combat
rating, strength, endurance and luck values are. These can then be
carried forward into the game under a set of variables that can be
reduced or increased depending on the circumstances the player's
character ends up in.

The player can then decide to either stick with their roll or try again
for the hope of better values being picked. There's ample ways in
which to implement this code into a basic adventure game.

Python 3.4.2 Shell = () : Stats p e/pi/Docu._hon Code/CharacterS --:xl
File Edit Shell Debug Options Windows Help File Edit Format Run Options Windows Help
Python 3.4.2 (default, Oct 19 2014, 13:31:11) - random -
[GCC 4.9.1] on linux
Type “copyright”, “credits" or “license()" for more information. Endurance=0
>>> RESTART CR=0
>>> Luck=0
Yuor character's stats are as follows: h Endurance=random.randint(1, 15)
CR=random.randint(1, 20)
Luck=random.randint(1, 10)
Endurance: 4 print(“Yuor acter re)
Combat Rating: S print("\nEn . Endurance)
Luck: 6 print(bat Rati ., CR)
>>> RESTART print(k:", Luck)
>>>
Yuor character's stats are as follows:
Endurance: 2

Combat Rating: 20

Luck: 6

55> m=s=mss=ssssssssssssssssss=s===s= RESTART =====s=sssssss=ss=sssssssssss====
>>>

Yuor character's stats are as follows:

Endurance: 12
Combat Rating: 16
Luck: 9

>>>

T 28/Col: 4 [n: 13]Cok: 0

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

000 06000000000000000000060080000

©00C0O000O00O00OCEOCOOCOOCOCEOCCONFOEOCOssecsossssessessssssscssssscssssssssssssnsss

www.bdmpublications.com 115

f
L]
N
g
<
B

BT D

F2* 2o BA RS x9S 33 HE T[]

<\
hg!

—

/[
[
\
N

User input and the ability to RNDNUMGEN.PY
manipulate that input are important It might be simple but this little piece of code will ask the user
3 9 for two sets of numbers, a start and a Finish. The code will then
lelements \;\gth al_?ytprogral?mmg pluck out a random number between the two sets and display it.
danguage. it S‘'what separates
a good program from a great Erouizandostunoct i
program, one thatiallows Ehe'user print(“\n>>>>>>>>>>Random Number Generator<<<<<<<<<<\n”)
} d h l. F nmbl=int(input (“Enter the start number: Y))
tO Intel'aCl'. and see t eresu tS o nmb2=int(input(“Enter the last number: Y))

that interaction: ARt Eb TR

print(“\nThe random number between”,nmbl,”and”,nmb2,”is:\n")

print(x)
] :
More Input 3
While an easy code to follow, it could be more interesting if you For example, the code could be edited to this: :
prompt the user for more input. Perhaps you can provide them
with addition, subtraction, multiplication elements with their from random import *
numbers. If you're feeling clever, see if you can pass the code import turtle
through a Tkinter window or even the Ticker window that's
available on Page 128. print(M\n>>>>>>>>>>Random Turtle Image<<<<<<<<<<\n”)

nmbl=int(input(“Enter the start number: Y))
nmb2=int(input(“Enter the second number: “))
nmb3=int(input(“Enter the third number: “))
nmb4=int(input(“Enter the fourth number: "))

Furthermore, the core of the code can be used in a text adventure
game, where the character fights something and their health,
along with the enemy'’s, is reduced by a random number. This
can be mixed with the previous code from Page 90's Number

“Re M OR[MDND T R[Jee@ D C
e RO N 1 -=RO;mo—o

Guessing Game, where we defined the stats for the adventure turtle.forward(nmbl)
game's character. turtle.left(90)

turtle.forward(nmb2)
You can also introduce the Turtle module into the code and turtle.left(90)

turtle.forward(nmb3)
turtle.left(90)
turtle.forward(nmb4)
turtle.left(90)

perhaps set some defined rules for drawing a shape, object or
something based on a user inputted random value from a range
of numbers. It takes a little working out but the effect is certainly
really interesting.

Whilst it's a little rough around the edges, you can easily make it
more suitable.

ST T e 7 ' — T

Ele Edt Shell Debug Options Windows Help rtieRn o on Code/Turt | e X

Python 3.4.2 (default, Oct 19 2014, 13:31:11) Ele Edt Format Bun Options Windows Help
{GCC 4.9.1] on linux -
Type "copyright”, "credits” or "license()" for more information.
>>> RESTART

[T E3I<0o ™

0
t

Y O[ORZ2ROIZS 9D —R|—B2.0@ =

random
urtle

"

>>>>>>Random Turtle Square<<c<<<<<<s

23
r: 21
: 45
ber: 33 turtle. fornard(nmb1)

RESTART

turtle. left(90)
turtle. fornard(nmb2)
turtle. left(90)
turtle. forward(nmb3)
turtle. left(90)
turtle. for

ward(nmb4)
turtle. left(90)
umber betwee

rtle Image<<<<<<<<<<

a
o m
www.bdm%)licationis.com
9 9

)
9

= [

CRandom Number Generator/Password Generator

Random Password

Generator

We're always being told that our
passwords aren’t secure enough; well
here’s a solution for you to implement
into your own future programs. The
random password generator code
below will create a 12-letter string of
words (both cases) and numbers each
time it's executed.

Secure Passwords

There's plenty you can do to modify this code and improve it
further. For one, you can increase the number of characters the
generated password displays and perhaps you can include special
characters too, such as signs and symbols. Then, you can output
the chosen password to a file, then securely compress it using the
previous random number generator as a file password and send it
to a user for their new password.

An interesting aspect to this code is the ability to introduce a loop
and print any number of random passwords. Let's assume you have
a list of 50 users for a company and you're in charge of generating
a random password for them each month.

Python 3.4.2 Shell o)
Elle Edt Shell Debug Options Windows Help

>>> RESTART
>>>
PINLSOMFXLIbCq1z
QfnQRjt5qf8p3deT
mfDGBK 1KcvOL11HR
R1967mcVqChvoHdy
ROLZWVDN1giCXTIK
2ZnsSBooDsDLATCVD
KvHKy616fIJSdxHE
SPSk77QPZnE20Cm7
8DWHFCcubPOXM 1311
UUCRSGhxFL4fWPS0
BCyVkma09QrpSMKc
C€2X7add0CsXGx0at
05FVZ150CHAPT7Bx
WYBbbzy3nPgHy TWb
2PfTnUv3fzghbBgH
HB20ULLPKXbE1L2u
y57cKCE7TWXBkNNe
t0Ddz1QDusSwYCSga
225Hpidc1tdLXPav
TnJApWXOUIM1L6EC
MWmAOWGHEBpQI 4fe
9zYtByYRgs0252d1
2N0xyped208asMES
Fjd2145MIhwgKNTF
rTYN44th0xPOKJZ0
13hM40ZgMcGS6L76
pntySQIVIRIFC7kN
iazbal 45K1Y29cSc
s1hzoLLqG2I2kx2z
TiLtPlJCzXcdrYZ8
0onSV3wL0QniSKPXI

©0060006000000000000000000000000006000000000080000008

€6 00C0OCC0C0000000000000000000000C0CCO0OCORIOCIOIOCOIOCOIOONOEOEOIOOTOIEOIOITOTET

RNDPASSWORD.PY

Copy the code and run it; each time you’ll get a random string
of characters that can easily be used as a secure password
which will be very difficult for a password cracker to hack.

import string
import random

def randompassword():
chars=string.ascii _ uppercase + string.ascii _
lowercase + string.digits
size= 8
return ‘.join(random.choice(chars) for x in
range(size,20))

print(randompassword())

0808000000000 00080000000000000

Adding a loop to print a password fifty times is extremely easy, for
example:

import string
import random

def randompassword():
chars=string.ascii _uppercase + string.ascii _
lowercase + string.digits
size= 4
return ‘.join(random.choice(chars) for x in
range(size,20))

n=0

while n<50:
print(randompassword())
n=n+1

This will output fifty random passwords based on the previous
random selection of characters.

JPasswordLo D.. Code sswordL
File Edit Fgrmat Run Qptions Windows Help

string
my © random

randompassword():
chars=string.ascii_uppercase + string.ascii_lowercase + string.digits
size= 4

‘*.Jjoin(random.choice(chars) x range(size,20))
n=0
¢ n<S0:
print(randompassword())
n=n+1

©0060080000000000000000000

www.bdmpublications.com 117

or X

o

b
£l
g
%
N
D)
A

CRroBA RS x0T 99 #E I

=)

(9 =D

TR]e@ OSSO N 2o

s ROAZ N 1 BOaur—0 il X howD []lO O ee

“RepnoxR[M[

FESNSIL D) I T WP SRR MRS S P
) © KO3 =23 .9 —R]—2.00

= [

“+H D

=

o=

é<\
Ag!

fand

ry Convertor

TXT2BIN.PY

N B Ul &, X i o b

Whileit Boﬁsgem tooge%@ng,
this té,xlutgi)f\ afy gonvertords < q
actually’quite good fun.Italso &
only ‘%é% tyvé“linegof cod8. 46 @'s B

extremelyeady'toinsert ir“fEO)your

Naturally we're using the format function to convert the
user’s entered text string into its binary equivalent. If you
want to check its accuracy, you can plug the binary into an

5 online convertor.

3 text=input(“Enter text to convert to Binary: “)

N RRCRO XK

print(' ‘.join(format(ord(x), ‘b’) for x in text))

| <

£

Eile Edit Shell Debug Options Windows Help File Edit Format Run QOptions Windows Help J
Python 3.4.2 (default, Oct 19 2014, 13:31:11) AR rint(~>>>>>>>>>>Text to Binary Convertor<<<<<<<<<<\n") :
[GCC 4.9.1] on linux
Type “copyright”, “credits™ or "license()" for more information. text=input("Enter text to convert to Binar) ‘
>>> == RESTART ssssssssssssssssssssssss .

print(’ '.join(format(ord(x)., 'b') x text))

>
>>>>>>>>>>Text to Binary Convertor<<<<<<<<<<

Enter text to convert to Binary: David L
YOOOIIOO 1100001 1110110 1101001 1100100

pi@méphetrypii ~/Documents/Python Code

Edit

Tabs

File Edit Format Bun Options

Windows Help

bn'lnt{' >r2222x223TedT 10 Blnary Convertor<s<<<<<<<<< A" -
Text=1nput(“Enter text to convert to Binary:)

print{® ‘.join{format(ord(x), ‘b*) for x in text))

da] %

Ll
118 www.bdm%licationk.com
L]

9] 9l

Text to Binary Convertor é‘

©600
.

1000010 1101001 1101110 1100001 1110010
1111001

The text to binary convertor does offer some room for
improvement and enhancement. There are many uses: it could be
utilised in a password or secret word script, as part of an adventure gone = False

game or just a novel way to display someone’s name. clock = pygame.time.Clock()

pygame.display.set _ caption(“Binary Conversion”)

MO READS[]H

-

With regards to improvements, you could display the binary text _ rotate _ degrees = 0
conversion in a Pygame window, using the animated text options
from page 100. You could also ask the user if they wanted to have Binary=(' ‘.Jjoin(format(ord(x), 'b’) for x
another go, or even ask if they wanted the binary output to be in conversion))
saved to a file. -
while not done:
With regar'ds to rendering thg outputFed binary conversion to a e e e e T
Pygame window, complete with rotating text, you can use: if event.type == pygame.QUIT:
done = True

import pygame
pygame.init() screen.fill(WHITE)

font = pygame.font.SysFont(‘Calibri’, 25, True, False)
BLACK = (0, 0, 0)
WHITE = (255, 255, 255) text = font.render(Binary, True, BLACK)
BLUE = (0, 0, 255) text = pygame.transform.rotate(text, text _
GREEN = (0, 255, 0) rotate _ degrees)
RED = (255, 0, 0) text _rotate degrees +=1

screen.blit(text, [100, 50])
Print(">>>>>>>>>>Text to Binary Convertor<<<<<<<<<<\n”) pygame.display.flip()

o

conversion=input(“Enter text to convert to Binary: “) clock.tick(60)

size = (600, 400) pygame.quit()
screen = pygame.display.set _mode(size)

print(' ‘.join(format(ord(x), ‘b’) for x in conversion))

File Edit Format Run Options Windows Help
pygame [

pygame. init()

BLACK = (0, 0, 0)

WHITE = (255, 255. 255)

BLUE = (0, 0, 255)

GREEN = (0, 255, 0)

RED = (255, 0, 0)

b
£l
g
%
N
D
u

print(

conversion=input(“Enter text t rt to Bina)
size = (600, 400)

screen = pygame.display.set_mode(size)
pygame.display.set_caption("B 1 nve on")

done =
clock = pygame.time.Clock()

text_rotate_degrees = 0
Binary=(.join(format(ord(x), 'b') x conversion))
done:
event pygame.event.get():
event.type == pygame.QUIT:

done =

screen. fil1(WHITE)
font = pygame.font.SysFont(it . 25, .)

text = font.render(Binary, . BLACK)

text = pygame.transform.rotate(text, text_rotate_degrees)
text_rotate_degrees += 1

screen.blit(text, [100, 50])

pygame.display.flip()

clock.tick(60)

pygame. quit()

print(’ '.join(format(ord(x).) x in conversion))

iz
Ln: 19|Col: 45

M2* 2o BA RS xUT9D) 33 HE T[]

0 08000000000000000008000C0OC0OC0COOCOI0OOCOOCNOCOOCOCOICOTOITOsssososeosscossosssoesssoecsesoesesosscsesoesessessossssesssssssssssss
00 6000000000000000000600000000000000008000000000000000000800000000000000CC00CO00O00OCCGCOOCOOCOOCOIOCEOCOsSesessososocososecososososososscecssoscoesecosocenoescscscescssssssssssssscscssoscss

©0000000800OCCOCOCOC0OCO0GCOOCOOCOOCONEONTOIIcOCOOOssecessssssssoseossssssecsssscssososssssssnsss

www.bdmpublications.com 119

“Ke QOR[N 2T X[]ee@ ROS

P v'&s3<0"®™

Wie
Y OORERO3I 223 5 —XR[—2.00

il

S ROZN I -xROMu—o =

LS
P24

= [

é<\
E Y

fand

4

n

Here's a' helpful and interesting
pieceof code, It's an extremely basic
file browser that's presented ina
graphical user interface using the
Tkinter module. There's alotyou can
learnfrom this code and implement
into your own: programs.

Ele Edt Format Bun Options Windows Help
tkinter Tk
idlelib. Treewidget ScrolledCanvas, FileTreelts

- Th()
o(

(Z1 Python Code

<71 dletterwrd.py

1 # Balls.py

Booleantest.py
#. BoxesColours.py
|- calcPipy

Comments.py
#. Dictin.py

Dictin2.py

#. FileBrowser.py
- FileMan.py

GoogleSearch.py
|-# Googleserch.py
#. KeybDraw.py

NumberGuess.py
#. PolygonCircles.py
RndNumGen.py
#. RndPassword.py
scroller.py

TkinterTables.py
|- TurtleLines.py
Txt28Bin.py

TxtRot.py

#. bkup.py

calendaryear.py
#. daysinmonth.py
#. exceptionl.py
exception2.py
|-# exception3.py
headstails.py
(- hello.py

leapyears.py
|- login.py
. logintime.py
- namelist.py
|-# print hello.py
pygamel.py

#, pygametit.ov

6]

SV ET
'HIRR< S

'R+ =2 o

“I
X
L]
o
H
W
u
“l
o
a

-~J

(1835 wso3 0 RE=RT

licationis.com

9l

www.bdm

T2 [ImS'o Yod'<[er o=

D +F KO XN

P

e Browser

FILEBROWSER.PY

Tkinter is the main module in use here but we’re also using
idlelib, so you may need to pip install any extras if the
dependencies fail when you execute the code.

from tkinter import Tk

from idlelib.TreeWidget import ScrolledCanvas,
FileTreeltem, TreeNode
import os

root = Tk()
root.title(“File Browser”)

sc = ScrolledCanvas(root, bg="white”,
highlightthickness=0, takefocus=1)
sc.frame.pack(expand=l, fill="both”, side="left”)

item = FileTreeItem(os.getcwd())
node = TreeNode(sc.canvas, None, item)

node.expand()

root.mainloop()

File Edit Format Run Options Windows Help

tkinter imy Tk L

1dlelib.TreeWidget
os

ScrolledCanvas, FileTreeltem, TreeNode
root = Tk()
root.title("File Browser™)

sc = ScrolledCanvas(root, bg="white
sc.frame.pack(expand=1, fill="both

. highlightthickness=0, takefocus=1)
. side="left")

item = FileTreeItem(os.getcwd())
node = TreeNode(sc.canvas, . item)
node. expand()

root.mainloop()

Basic GUI File Browser é‘

©00

Advanced Filing o

When executed, the code will display the current directory’s with open(name,’r’) as UseFile:
contents. If you want to see the contents of another directory, you pEEnt(bscErTeiresci))
can run the code from a command line within the chosen directory; oxcEphe -
just remember to call the code from where it's located on your PEILUNG R e CRengat)
system, as per the second screenshot. You can also double-click any
of the file names shown in the directory tree and rename them. Title = root.title(“File Opener”)

label = ttk.Label(root, text ="File
This is an interesting piece of code and one that you can insert into Open”, foreground="red”, font=(“Helvetica”, 16))
your own programs. You can extend the code to include a user label.pack()
specified directory to browse, perhaps your own unique file icons
too. If you're using Linux, create an alias to execute the code and
then you can run it from wherever you are in the system.

MORTEADS[]H

~
=

X

menu = Menu(root)
root.config(menu=menu)

Windows users may have some trouble with the above code, an

file = Menu(menu
alternative can be achieved by using the following: d)

file.add _ command(label = ‘Open’, command = OpenFile)
from tkinter import * file.add _command(label = ‘Exit/, command =
from tkinter import ttk lambda:exit())

from tkinter.filedialog import askopenfilename

menu.add _ cascade(label = ‘File’, menu = file)
root = Tk()

root.mainloop()
def OpenFile():
name = askopenfilename(initialdir="C:/”,
filetypes =(("Text File”, “*.txt”),(“All

Files” " %/ ,) i)
oSl It's not quite the same but this code allows you to open files
title = “Choose a file.” . . - i 7
) in your system via the familiar Windows Explorer. It's worth
] experimenting with to see what you can do with it.
&
File Edit Format Run Options Windo Help
tkinter
tkinter ttk ﬂ
tkinter.filedialog askopenfilename o
v
root = Tk() D
OpenFile(): ‘}_I
name = askopenfilename (initialdir="C:/", ol
filetypes =(("Text File", "*.txt"),("All Files","*.*")),
title = "Choose a file."

)

print (name)

name, 'r') UseFile:
t (UseFile.read())

Title = root.title("File O
1 1 = ttk.Label (root, text
label.pack()

e Open”, foreground="re

menu = Menu(root)
root.config (menu=menu)

file = Menu (menu)

file.add command (label ', command = OpenFile)
file.add command (label ', command = texit())
menu.add cascade (label = 'File', menu = file)

root.mainloop ()

(RO ARS x9S 93 % T[]

0 000600
© 0000000000000 00000000000000000000000000000600COCC0CCCCOCCCOCOCO0COCCOCCOCCICOIOCO0OO0OC0OC0CCCOCCIOCOCIOC0ICCICCC0C0COCCIOCICC0CICCOCOCIOCOIOCOIOCOIOCONIOIOIOOIOOOEOOOIOTET

060 000OCO00CCO0CCCOC0GCOIOCOIOCOICONOssssossscsssssssssssss

www.bdmpublications.com 121

<\
E I

fand

4

n

MOUSETURTLE.PY

The First piece of code presents the standard Turtle window.
Press Space and then click anywhere on the screen for the
Turtle to draw to the mouse pointer. The second allows you to
click the Turtle and drag it around the screen; but be warned,
it can crash Python.

We've already seen the Turtle
module being controlled by the

user via'the keyboard but now we
thought we'd’see how the user can
use their;mouse as a drawing tool
within Python. We*have two possible

N[]Je@ hO

code examples'here, pick which
warks bestifor you.

Ele Edit Format Run Options Windows Help

turtle Screen, Turtle

screen = Screen()
B yertle = Turtle()

1st Code Example:

from turtle import Screen, Turtle

screen = Screen()
yertle = Turtle()

def k101():
screen.onscreenclick(click _ handler)

def click _ handler(x, y):
screen.onscreenclick(None) # disable event inside

5 k1o H
€ slr;ér)x.onscreencuck(cuck,handler) event handler
lick_handls X, : .
] ccreen onscrecnclick(None) # disable event inside event handler yertle.setheading(yertle.towards(x, y))
‘W yertle.setheading(yertle.towards(x, y)) 1
yertleigntotx, y) e N —_ . yertle.goto(x, y)
D o ” screen.onscreenclick(click handler) # reenable
- screen.onkey(k101,) # space turns on mouse drawing e
] . ty N " s event on event handler exit
screen. listen
4 screen.onkey(k101, “ “) # space turns on mouse drawing
0 g screen.listen()
° X screen.mainloop()
9
2
W .
k| 2nd Code Example:
from turtle import *
y shape(“circle”)
m ncolor (“blue”
Flle Edit Format Run Options Windows Help P? €90 (blue)
B " turtle width(2)
N | shapec-circler) ondrag(goto)
O i N listen()
ondrag(goto)
listen()
C"“‘ #arning This code can crash Python, so use it sparingly
| B T P T TP RPRTT GaGiacai daia I
Ninja TurtleMouse :

=A 0

@
C
1
]
[
X
i
4]
o
W
()]
9
X
|
9
]
@

S oD 3

=

o

m
www.bdm%ﬂica tionis.com

o

This code utilises some interesting skills. Obviously it will stretch
your Python Turtle skills to come up with any improvements,
which is great, but it could make for a nice piece of code to

insert into something a young child will use. Therefore itcanbe ~ *
a fantastic project for a younger person to get their teeth into;

or perhaps even as part of a game where the main character is :
tasked to draw a skull and crossbones or something similar.

< Mouse Controlled Turtle/ Python Alarm Clock

Python Alarm

Ever taken a quick break from working
at the computer, then suddenly realised
many minutes later that you've spent all
that time on Facebook? Introducing the
Python alarm clock code, where you can
drop into the command prompt and tell
the code how many minutes until the
alarm goes off.

ALARMCLOCK.PY

This code is designed for use in the command prompt, be that
Windows, Linux or macOS. There are some instructions on how
to use it in the main print section but essentially it’s: python3
AlarmClock.py 10 (to go off in ten minutes).

import sys
import string
from time import sleep

sa = sys.argv
lsa = len(sys.argv)
if lsa !'= 2:
print (“Usage:
in _ minutes”)
print (“Example: [python3] AlarmClock.py 10”)
print (“Use a value of 0 minutes for testing the
alarm immediately.”)
print (“Beeps a few times after the duration is over.”)
print (“Press Ctrl-C to terminate the alarm
clock early.”)
sys.exit(1l)

[python3] AlarmClock.py duration _

try:
minutes = int(sa[l])
except ValueError:
print (“Invalid numeric value (%s) for minutes” % sa[l])
print (“Should be an integer >= 0”)
sys.exit(1l)

if minutes < 0:
print (“Invalid value for minutes, should be >= 07)

sys.exit(1l)

seconds = minutes * 60

if minutes == 1:

unit _word = “ minute”
else:

unit _word = “ minutes”

Clock

try:
if minutes > 0:
print (“Sleeping for “ + str(minutes) + unit _ word)
sleep(seconds)
print (“Wake up”)
for i in range(5):
print (chr(7)),
sleep(l)
except KeyboardInterrupt:
print (“Interrupted by user”)
sys.exit(1l)

Wakey Wakey

There's some good use of try and except blocks here, alongside
some other useful loops that can help you get a firmer
understanding of how they work in Python. The code itself

can be used in a variety of ways: in a game where something
happens after a set amount of time or simply as a handy
desktop alarm clock for your tea break.

Linux users, try making the alarm clock code into an alias, so
you can run a simple command to execute it. Then, why not
integrate a user input at the beginning to ask the user for the
length of time they want until the alarm goes off, rather than
having to include it in the command line.

Windows users, if Python 3 is the only version installed on your
system then you will need to execute the code without adding
the 3 to the end of the Python command. For example:

python AlarmClock.py 10

Again, you could easily incorporate this into a Windows batch
file and even set a schedule to activate the alarm at certain
times of the day.

www.bdmpublications.com 123

|
)
b
H|
g
%
N
D)
U
£l
H
11
#
f
A
9]
)
5
>k
n
1
<
i
6
4
a1
£

(
4
g
0
X
N
D
L]
L]
0
(1
4l
9
y
m
B
2}
L]
Coo
4
L]
<
g

S o 22 3

=]}

S ROZN I -ROMUI—T =

Y O[OUERZ2ROIZE 9H—R|—B2.0@ =

What's not to like about vertically
scrolling text? Its uses are many: the
beginning of a game or introduction
to something’epic, like the beginning
of every Star Wars-movie; a list of
credits at the end of someéthing, such
as d Python presentation. The list
goes on.

'mO <
405

oA 0 A v—[
NER< S <D 3

<< 'Oodw
XEO2 o ~20

S

' REO—ERE KON 2
2" oo [TV N\

= o

Z
]
|
9
m

licationis.com

9l

0.3 LS [t e KLS s0
AR+ 2 <

3 KE\O~-

www.bdm

(B [(Iwo =

T[S o "o <[Jer o] -[1~=21[

EPICSCROLL.PY

We've used the poem Cimmeria by Robert E. Howard for the
code’s scrolling text, along with a dramatic black background
and red text. We think you'll agree, it's quite epic.

import pygame as pg
from pygame.locals import *

Pg.init()
text _ list = Y/

I remember

The dark woods, masking slopes of sombre hills;
The grey clouds’ leaden everlasting arch;

The dusky streams that flowed without a sound,

And the lone winds that whispered down the passes.

Vista on vista marching, hills on hills,

Slope beyond slope, each dark with sullen trees,
Our gaunt land lay. So when a man climbed up

A rugged peak and gazed, his shaded eye

Saw but the endless vista - hill on hill,

Slope beyond slope, each hooded like its brothers.

It was a gloomy land that seemed to hold

All winds and clouds and dreams that shun the sun,
With bare boughs rattling in the lonesome winds,
And the dark woodlands brooding over all,

Not even lightened by the rare dim sun

Which made squat shadows out of men; they called it
Cimmeria, land of Darkness and deep Night.

It was so long ago and far away

I have forgot the very name men called me.

The axe and flint-tipped spear are like a dream,
And hunts and wars are shadows. I recall

Only the stillness of that sombre land;

The clouds that piled forever on the hills,

The dimness of the everlasting woods.

Cimmeria, land of Darkness and the Night.

Oh, soul of mine, born out of shadowed hills,

To clouds and winds and ghosts that shun the sun,
How many deaths shall serve to break at last
This heritage which wraps me in the grey

Apparel of ghosts? I search my heart and find
Cimmeria, land of Darkness and the Night!

V7 split(*\n’)

Vertically Scrolling Text

class Credits:
def _ _ init _ _ (self, screen _rect, 1lst):
self.srect = screen _ rect
self.lst = 1st
self.size = 16
self.color = (255,0,0)
self.buff _centery = self.srect.height/2 + 5
self.buff _lines = 50
self.timer = 0.0
self.delay = 0
self.make _ surfaces()
Eile Edit Format Run Options Windows Help }

A Long Time Ago...

The obvious main point of enhancement is the actual text
itself. Replace it with a list of credits, or an equally epic opening
storyline to your Python game, and it will certainly hit the

mark with whoever plays it. Don't forget to change the screen
resolution if needed; we're currently running it at 800 x 600.

eecesscsscssscsscscscssse
escecscscssesssescscssse

©800

def make _ text(self,message): **ssplit(tint) ‘
. \ 3 ’ 3 Credits:
font = pg.font.SysFont(‘Arial’, self.size) it (a1, SEreerrects 15E)E
text = font.render(message,True,self.color) :S:Tgicg ;;C'w‘-fect
rect = text.get rect(center = (self.srect. se}:»nie - 1((9255 03
oo self.color = .0,
centerx, self.srect.centery + self.buff centery)) self.buff_centery = self.srect.height/2 + 5

return text,rect

def make _ surfaces(self):
self.text = []

font = pg.font.SysFont(ial', self.size)
for i, line in enumerate(self_lst): text = font.render(message. .self.color)
% Y rect = text.get_rect(center = (self.srect.centerx, self.srect.centery +
1 = self.make _ text(line) text,rect

1[1].y += i*self.buff lines
self.text.append(l)

def update(self):

if pg.time.get _ ticks()-self.timer > self.delay:

self.timer = pg.time.get _ ticks()
for text, rect in self.text:
recty =1

def render(self, surf):
for text, rect in self.text:
surf.blit(text, rect)

screen = pg.display.set mode((800,600)) running:
= event pg.event.get():
screen _rect = screen.get rect() event.type == QUIT:
e = running =

clock = pg.time.Clock()
running=True
cred = Credits(screen _ rect, text _ list)

while running:
for event in pg.event.get():
if event.type == QUIT:
running = False
screen.fil1((0,0,0))
cred.update()
cred.render(screen)
pg.display.update()
clock.tick(60)

self.buff_lines = 50
self.timer = 0.0
self.delay = 0

| self.make_surfaces()

make_text(self,message):

make_surfaces(self):
self.text = []
i, line enumerate(self.l1st):
1 = self.make_text(line)
1[1).y += i*self.buff_lines
self.text.append(1l)
update(self):
pg.time.get_ticks()-self.timer > self.delay:
self.timer = pg.time.get_ticks()
text, rect self.text:
rect.y -= 1

render(self, surf):
text, rect self.text:
surf.blit(text, rect)

screen = pg.display.set_mode((800,600))
screen_rect = screen.get_rect()

clock = pg.time.Clock()

running=

cred = Credits(screen_rect, text_list)

screen.fill((0,0,0))
cred.update()
cred.render(screen)
pg.display.update()
clock.tick(60)

Ln: 1|Col: 0

www.bdmpublications.com 125

or X

b
|
g
%
N
D
U
]
H
1l
#
1
12
9]
2
5
¥
1]
1
<
21
6
4
&l
]

S Re NMOR[MN[MND EXR[Jeet Q@ DO

[l E3I<0o ™

0
t

ig
YO[ORZ2ROIZES 9D —R|—B2.0@ =

g

S ROZN 1 -ROMU—oT =

&= [

<\
Y

fand

There is already a clock displayed

on the desktop of most operating
systems but it's always handy to have
one on top of the currently open
window. To'that end, why not create
a Python digitaliclock that can be a
companion desktop widget foryou.

Eile Edt Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1] on linux

Type “"copyright”, “credits” or “license()" for more information.
>>> RESTART

RESTART

RESTART

RESTART

T

Flle Edit Format Run Options Windows Help

time
tkinter tk

tick(timel=""):
get the current time fror
time2 = time.strftime('¥H
time2 != timel:
timel = time2
clock.config(text=time2)

clock.after(200, tick)

root = tk.Tk()

clock = tk.Label(root, font=(‘arial’, 20, ‘'t
clock.pack(fill="both’, expand=1)

tick()

root.mainloop()

<]
HOZ e
S eV
' XX XY

MY
e
IR+ =2 <

6

'R == O B

Lo

Z
]
|
9
m

licationis.com

9l

Q.3 LS [t o e X20H

"3~ HGEO""

-~J

835 w3 28EE

www.bdm

(B [(Iwo =

Dl + &= KO
T2 [ImS'o Yo®' <[] o

]

DIGCLOCK.PY

This is a surprisingly handy little script and one that we've
used in the past instead of relying on a watch or even the
clock in the system tray of the operating system.

import time
import tkinter as tk

def tick(timel=’’):
get the current time from the PC
time2 = time.strftime(‘$H:3M:%S’)
if time2 != timel:
timel = time2
clock.config(text=time2)

clock.after(200, tick)

root = tk.Tk()

clock = tk.Label(root, font=(‘arial’, 20, ‘bold’),
bg='green’)

clock.pack(fill="both’, expand=1)

tick()

root.mainloop()

File Edit Tabs Help
»i@raspberrypi
J

File Edit Format Run Options Windows Help

time
tkinter tk

tick(timel="'"):

get the current time from the PC
time2 = time.strftime(' %H $')
time2 != timel:
timel = time2

clock.config(text=time2)
clock.after(200, tick)

root = tk.Tk()

clock = tk.Label(root, font=('arial', 20, ‘bold'). bg="green')
clock.pack(fill="both', expand=1)
tick()

root.mainloop()

Tick Tock

This is a piece of code we've used many times in the past to keep
track of time while working on multiple monitors and with just a
quick glance to where we've placed it on the screen.

The Tkinter box can be moved around without affecting the time,
maximised or closed by the user at will. We haven't given the
Tkinter clock window a title, so you can add to that easily enough
by snipping the code from other examples in this book.

Another area of improvement is to include this code when
Windows or Linux starts, so it automatically pops up on the
desktop. See also, if you're able to improve its functionality by
including different time zones: Rome, Paris, London, New York,
Moscow and so on.

File Edit Format Run Options Windows Help

tkinter
time

Total Time: 2.259363

StopWatch(tkinter.Frame):

@classmethod
main(cls):
tkinter.NoDefaultRoot() Stop
root = tkinter.Tk()
root.title('Stop tch')
root.resizable(
root.grid_columnconfigure(0, weight=1)
padding = dict(padx=5, pady=5)
widget = StopWatch(root, **padding)
widget.grid(sticky=tkinter .NSEW, **padding)
root.mainloop()

__init__(self, master= . enf={}, **kw):

padding = dict(padx=kw.pop('padx', 5), pady=kw.pop('pady’, 5))
super().__init__(master, cnf, **kw)
self.grid_columnconfigure(1, weight=1)
self.grid_rowconfigure(1, weight=1)

self.__total = 0

self.__label = tkinter.Label(self, text='Total Time:')

self.__time = tkinter.StringVar(self, '0.000000')
self.__display = tkinter.Label(self. textvariable=self.__time)
self._button = tkinter.Button(self, text='Start', command=self._ click)
self.__label.grid(row=0, column=0, sticky=tkinter.E, **padding)
self._display.grid(row=0, column=1, sticky=tkinter.EW, **padding)
self.__button.grid(row=1, column=0, columnspan=2,
sticky=tkinter.NSEW, **padding)

__click(self):

self.__button['text’] ==

self.__button['text’]

self. _start = time.clock()
self. _counter = self.after_idle(self._update)

éelf._button[“ﬂ '] -

self.after_cancel(self._counter)

Ln: 12(Col: 22

Another example, expanding on the original code, could be a
digital stopwatch. For that you could use the following:

import tkinter
import time

class StopWatch(tkinter.Frame):

@classmethod

def main(cls):
tkinter.NoDefaultRoot()
root = tkinter.Tk()

Python Digital Clock

©00

root.title('Stop Watch’)
root.resizable(True, False)
root.grid _ columnconfigure(0, weight=1)
padding = dict(padx=5, pady=5)
widget = StopWatch(root, **padding)
widget.grid(sticky=tkinter.NSEW, **padding)
root.mainloop()
def _ _ init _ _ (self, master=None, cnf={}, **kw):
padding = dict(padx=kw.pop(‘padx’, 5), pady=kw.
pop(‘pady’, 5))
super(). _ _ init _ _ (master, cnf, **kw)
self.grid _ columnconfigure(l, weight=1)
self.grid _ rowconfigure(l, weight=1)

self. _ total =0

self. _ _ label = tkinter.Label(self,

text='Total Time:’)

self. _ time = tkinter.StringVar(self,
*0.0000007)

self. _ _ display = tkinter.Label(self,

textvariable=self. _ _ time)

self. _ _ button = tkinter.Button(self,

text='Start’, command=self. _ click)

self. _ _ label.grid(row=0, column=0,

sticky=tkinter.E, **padding)

self. _ _ display.grid(row=0, column=1,

sticky=tkinter.EW, **padding)

self. _ _ button.grid(row=l, column=0,

columnspan=2,sticky=tkinter.NSEW, **padding)

def _ _ click(self):

if self. _ _ button[‘text’] == ‘Start’:

self. _ _ button[‘text’] = ‘Stop’

self. _ start = time.clock()

self. _ counter = self.after _ idle(self. _ _ update)
else:

self. _ _ button[‘'text’] = ‘Start’

self.after _cancel(self. _ _ counter)
def _ _ update(self):

now = time.clock()

diff = now - self. _ start

self. _ _ start = now

self. _ total += diff

self. _ time.set(‘{:.6f} .format(self. _ _ total))

self. _ counter = self.after idle(self. _ update)

if _ _name__ == '_ _main_ _":
StopWatch.main()

©800000000000000000000000800000000000000800C0O0COROCIOIOCOIOSOIOONOIOOOIOS

127

www.bdmpublications.com

00 000008000C00COCCCO0COCOCOCCOCOIOCOIOCOICONCOIOosceEcsssssssssssssosssnsssssscoecsssnessssssosssscssscsososssocss

o

O\O_Q e I O

B2 Uee O X

L]
H
1l
#
f
7]
9l
2
5)
>k
n
1
-
of
6
4
£y
L]

mf

w3 K= =[] ur—

X
n
D
O
O
0
[«
4l
9
y
m
B
)
O

Cow
v

N ™
YPNOVURERO3I 22 9 —XR[—2.00

<o
P2

= [

6

1

7
bKecX o 4 ' |
wﬂou[] #
[] a Wi -

Playing Music wi

h the

Winsound Modt

le

Of course, instead of playing an MUSIC.PY

existing MP3, you can always make
your own music. The code below

will play out Pachelbel’s Canon‘in D, of asecond.

no leSS, import winsound
import time
t = 250
p = .50
11C = 65
1c =131
1Db = 139
D = 147
1Eb = 156
1IE = 165
1IF =175
1Gb = 185
16 = 196
1ab = 208
1a = 220
1Bb = 233
1B = 247
c =262
Db = 277
D =294
Eb = 311
E =330
F = 349
Gb = 370
G =392
Ab = 415
A = 440
Bb = 466
B = 494
hc = 523
hDb = 554
hD = 587
hEb = 622
hE = 659
hF = 698
hGb = 740
hG = 784
hab = 831
hA = 880
hBb = 932
hB = 988

www.bdm%licationis.com

o

time.sleep(0.

The code utilises both the Time and Winsound modules,
defining the tone and pitch and inserting small pauses of .5

L

001)

<Playing Music with the Winsound Module é‘

for i in range (5):

©000

Sweet Music

winsound.Beep(1C, 2*t)
winsound.Beep(hC, t)
winsound.Beep(hE, t)
winsound.Beep(hG, t)
time.sleep(p)
winsound.Beep(1G, 2*t)
winsound.Beep(G, t)
winsound.Beep(B, t)
winsound.Beep(hD, t)
time.sleep(p)
winsound.Beep(1A, 2*t)
winsound.Beep(A, t)
winsound.Beep(hC, t)
winsound.Beep(hE, t)
time.sleep(p)
winsound.Beep(1lE, 2*t)
winsound.Beep(E, t)
winsound.Beep(G, t)
winsound.Beep(B, t)
time.sleep(p)
winsound.Beep(1F, 2*t)
winsound.Beep(F, t)
winsound.Beep(A, t)
winsound.Beep(hC, t)
time.sleep(p)
winsound.Beep(11C, 2*t)
winsound.Beep(C, t)
winsound.Beep(E, t)
winsound.Beep(G, t)
time.sleep(p)
winsound.Beep(1F, 2*t)
winsound.Beep(F, t)
winsound.Beep(A, t)
winsound.Beep(hC, t)
time.sleep(p)
winsound.Beep(1G, 2*t)
winsound.Beep(G, t)
winsound.Beep(B, t)
winsound.Beep(hD, t)

time.sleep(p)

060 000

Obviously the Winsound module is a Windows-only set of
functions for Python. Open your IDLE in Windows and copy the
code in. Press F5 to save and execute, then press the Enter key,
as instructed in the code, to start the music.

Naturally you can swap out the winsound.Beep frequency and
durations to suit your own particular music; or you can leave it as
is and enjoy. Perhaps play around with the various methods to
make other music.

For example, players of the Nintendo classic game, The Legend
of Zelda: Ocarina of Time, can enjoy the game’s titular musical
intro by entering:

import winsound
beep = winsound.Beep

c=1
(880, 700),
(587, 1000),
(698, 500),
(880, 500),
(587, 1000),
(698, 500),
(880, 250),
(1046, 250),
(988, 500),
(784, 500),
(699, 230),
(784, 250),
(880, 500),
(587, 500),
(523, 250),
(659, 250),
(587, 750)

1

sE=Nctic

for £, d in s:
beep(f, d)

$000 000000

000000000000 000C00C000CCO0CCCOCCCECCIOCCIO0CI0CCCCC0CCCC0000000000000000000000

The start of the code imports the Winsound and Tie modules;

remember, this is a Windows-only Python script. The variable t
is setting the duration, while p equals .5, which you can use for
the time.sleep function.

These variables set the frequencies, with the corresponding

3

numbers, which can be used in the next section of the code.

Winsound.beep requires a frequency and duration within the
brackets. The frequencies come from the large set of variables
called in the second section of the code and the duration is
through the t variable set at the start of the code. There's a
half-second, using the variable p, pause between blocks of
winsound.beep statements.

£, d s:
beep (£, d)

www.bdmpublications.com

129

MORTEADS[]H

-

o ®

b

£l

g
%
N

D
yi|

]
H

11

#
f

)

9)

a

5

5k

1]
1

4

21
6

4

&l
£

" Re QOR[N D R[Jee@ hO=S

{l
9
y
m
B
2
L]

W
@
C
a
]
N
X
i
|
oY
i
(]
9
X
|
9
]
@

2 madlo

S o2 3

s B2 N B[] mvu—oT =

= [

Text adventures'are an excellent
way to build your Python coding
skills and have some fun at the same
time. This example that we created
will start you'on the path to making
a classic'text adventure; where'it will
end is'up to you.

Edit Format Run Options Windows Help

print(

start():
pri r

cndlist=["1", "2"]
cnd=getcnd(cndlist)
and == "1

ragged()
ond == “2:
guards()
ragged():
print(*\n" * 200)
print(s walk up to
fe smiles a toothle:
Buy m
tine.sleep(2)

guards():
print(“\n" *200)
print(

time.sleep(2)

getemd(cmdlist):
cnd = inp

and in emdlist:
v

; a
f
130

www.bdm%licationk.com

o

T[]0 "o <[Jer o[-~ =2

ADVENTURE.PY

The Adventure game uses just the Time module to begin
with, creating pauses between print functions. There's a help
system in place to expand upon, as well as the story itself.

import time

print(™\n” * 200)

Print (">>>>>>>>>>Awesome Adventure<<<<<<<<<<\n”)
print(“\n” * 3)

time.sleep(3)

print(“\nA long time ago, a warrior strode forth from
the frozen north.”)

time.sleep(1)

print(“Does this warrior have a name?”)

name=input(“> ")

print(name, “the barbarian, sword in hand and looking
for adventure!”)

time.sleep(1)

print(“However, evil is lurking nearby....”)
time.sleep(1)

print(“A pair of bulbous eyes regards the hero...”)
time.sleep(1)

print(“Will”, name, “prevail, and win great fortune...”)
time.sleep(1)

print(“Or die by the hands of great evil...?”)
time.sleep(1)

print(“\n” *3)

print(“Only time will tell...”)

time.sleep(1)

print(‘...”)
time.sleep(1)
print(‘...”)
time.sleep(1)
print(‘...”)
time.sleep(1)
print(‘...”)

time.sleep(5)
print(“\n” *200)

print ("’ You find yourself at a small inn. There'’s
little gold in your purse but your sword is sharp,
and you’re ready for adventure.
With you are three other customers.
A ragged looking man, and a pair of dangerous
looking guards.’’’)

def start():

print("\n -------—-- %)
print(“Do you approach the...”)
print(“\n”)

print(“1l. Ragged looking man”)
print(“2. Dangerous looking guards”)

cmdlist=["1", “2”]
cmd=getcmd (cmdlist)

00 0008000

if emd == “1”:
ragged()
elif cmd == “2”:
guards()

def ragged():

print(“\n” * 200)

print(Y’You walk up to the ragged looking man and

greet him.
He smiles a toothless grin and, with a strange
accent, says.
“Buy me a cup of wine, and I’'ll tell you of
great treasure...”’’)

time.sleep(2)

def guards():
print(“\n” *200)

print(Y’You walk up to the dangerous looking guards

and greet them.
The guards look up from their drinks and
snarl at you.
“What do you want, barbarian?” One guard reaches
for the hilt of his sword...”’’)
time.sleep(2)

600000000000 0060000000000000000000000006000000000000000000000000000000000

Adventure Time

This, as you can see, is just the beginning of the adventure and
takes up a fair few lines of code. When you expand it, and weave
the story along, you'll find that you can repeat certain instances
such as a chance meeting with an enemy or the like.

We've created each of the two encounters as a defined set

of functions, along with a list of possible choices under the
cmdlist list, and cmd variable, of which is also a defined function.
Expanding on this is quite easy, just map out each encounter and
choice and create a defined function around it. Providing the user
doesn't enter quit into the adventure, they can keep playing.

There's also room in the adventure for a set of variables designed
for combat, luck, health, endurance and even an inventory or
amount of gold earned. Each successful combat situation can
reduce the main character’s health but increase their combat skills
or endurance. Plus, they could loot the body and gain gold, or earn
gold through quests.

Finally, how about introducing the Random module. This will
enable you to include an element of chance in the game. For
example, in combat, when you strike an enemy you will do a
random amount of damage as will they. You could even work out
the maths behind improving the chance of a better hit based on

your or your opponent’s combat skills, current health, strength and

endurance. You could create a game of dice in the inn, to see if you

win or lose gold (again, improve the chances of winning by working

out your luck factor into the equation).

Needless to say, your text adventure can grow exponentially
and prove to be a work of wonder. Good luck, and have fun with
your adventure.

©0000000800O0000000O00OCSOCOOCOOCO00OCOCOCOIOCOOC0CO0OC0C0IOCNIOCOCOINEOEOEssossecssssosssssscsssssssnsss

<Text Adventure Script le

def getcmd(cmdlist):

cmd = input(name+”>”)

if cmd in cmdlist:
return cmd

elif cmd == “help”:
print(“\nEnter your choices as detailed in
the game.”)
print(Mor enter ‘quit’ to leave the game”)
return getcmd(cmdlist)

elif cmd == “quit”:
print(“\n-----------)
time.sleep(1)
print(“Sadly you return to your homeland without
fame or fortune...”)
time.sleep(5)
exit()

if _ _name _ _ =="_ _ main ”:
start()

‘ *Adventure py - /home/pi/Documents/Python Code/Adventure. py (3.4.2)*

Eile Edit Format Run Qptions Windows Help

AT
print(“\n" *200)
CR=0

Strength=0

Health=0
Luck=0

print(“The moun
print(“Press Ent
input()
Strength=random.randint(1,20)
print(name, va
print("\nIt
print("Press
input()
CR=random.randint(1, 30)
print(name, “has a

s of the north make for a hard life.”)
11 the dice and see ho

print(‘vu;,
input()
Health=Strength+CR

input()

Luck=random.randint(1, 15)
Luck > 13:
print(name, "is luck indee and has a Luck value of:", Luck)
print(name, “has Luck)

time.sleep(5)

print("\n" *200)

print(“Here's your character stats:\n")
print(name)

print(
print("s
print("H
print("L
print(
print(“Pres
input()
print(“\n" *200)

Rating =", CR)
. Strength)

., Health)

. Luck)

to start your adventure)

print(

start():
print(

print(“Do
print("\n")
print("1. R
print("2

000 06000

www.bdmpublications.com 131

MORTEADS[]H

-

§
D
2
[]
H
1
#
n
2

2'roBARS x9S

X[]e

~HNe QOR[N =2

[l E3I<0o ™

O
t

wad
YO OREROI 2SI 9 —Ri|—_B2o@ =

TN

S o 22 3

U—

w3 [=ZDld e[

&= [

yhdn SCro
Ticker Script

ing

You may be surprised to hear that
one of thesnippets of code we're
often-asked for is some form of

scrolling ticker. Whilst we've covered

various forms of scrolling text
previously, the ticker is something
that seems to keep'cropping up. So,
here it is.

Ticker Time

The obvious improvements to the Ticker code lie in

the speed of the text and what the text will display.
Otherwise you can change the background colour of
the ticker window, the font and the font colour, along
with the geometry of the Tkinter window if you want to.

Yet another interesting element that could be
introduced is one of the many text to Speech modules

available for Python 3. You could pip install one, import it,

then as the ticker displays the text, the text to speech

function will read out the variable at the same time, since

the entire text is stored in the variable labelled 's'.

T T T)
Warning!!! Warning!!

The ticker example can be used for system warnings,
perhaps something that will display across your work or
home network detailing the shutting down of a server
over the weekend for maintenance; or even just to
inform everyone as to what's happening. We're sure
you will come up with some good uses for it.

TICKER.PY

We're using Tkinter here along with the Time module to
determine the speed the text is displayed across the window.

import time
import tkinter as tk

root = tk.Tk()

canvas = tk.Canvas(root, root.title(“Ticker Code”),
height=80, width=600, bg="yellow”)

canvas.pack()

font = (‘courier’, 48, ‘bold’)

text _ width = 15

#Text blocks insert here....

sl = “This is a scrolling ticker example. As you

can see, it's quite long but can be a lot longer if
necessary... "

s2 = “We can even extend the length of the ticker
message by including more variables... “

s3 = “The variables are within the s-values in

the code. ™

s4 = “Don’t forget to concatenate them all before the
For loop, and rename the ‘spacer’ s-variable too.”

pad front and end of text with spaces
s5 = ' ' * text width
concatenate it all
=s5+ sl +s2+ s3+ s4+s5
x=1
y=2
text = canvas.create _ text(x, y, anchor='nw’, text=s,
font=font)
dx =1
dy = 0 # use horizontal movement only

the pixel value depends on dx, font and length of text
pixels = 9000

for p in range(pixels):
move text object by increments dx, dy
-dx --> right to left
canvas.move(text, -dx, dy)
canvas.update()
shorter delay --> faster movement
time.sleep(0.005)
#print(k) # test, helps with pixel value

root.mainloop()

<Python Scrolling Ticker Script/Simple Python Calculator

Simple Python Calculator

Sometimes the simplest code can be
the most effective. Take for example,
this Simple Python Calculator script. It's
based on the Create Your Own Modules
section seen earlier but doesn't utilise
any external modules.

CALCULATOR.PY

We created some function definitions to begin with, then lead
on to the user menu and inputs. It's an easy piece of code to
follow and as such can also be expanded well too.

print(®---——----- Simple Python Calculator---------- \n")

def add(x, y):
return x + y

def subtract(x, y):
return x - y

def multiply(x, y):
return x * y

def divide(x, y):
return x / y

print(“Select operation.\n”)
print(“1.Add”)
print(“2.Subtract”)
print(“3.Multiply”)
print(“4.Divide”)

choice = input(“\nEnter choice (1/2/3/4):”)

numl = int(input(“\nEnter first number: “))
num2 = int(input(“Enter second number: %))
if choice == ‘1’:

print(numl,”+”,num2,”=", add(numl,num2))

elif choice == ‘2’:
print(numl,”-”,num2,”=", subtract(numl,num2))

elif choice == '3’:
print(numl,”*”,num2,”=", multiply(numl,num?2))

elif choice == ‘4':

print(numl,”/”,num2,”=", divide(numl,num2))
else:

print(“Invalid input”)

C ator.p 1ome/pi/Documents

Eile Edit Format Run Options Windows Help

print(---------- Simple Python

add(x, y):
xX+y

subtract(x, y):
x-y

multiply(x, y):
2 x*y

divide(x, y):
x/y

print(”s
| print(
| print(
print(“3 y
print(“4.Divide

choice = input(“\nEnter choice (1/2/3/4):")

nt £
1iter fi

| num1 = int(input(

E st))
num2 = int(input(“Enter second

r: "))
choice == "1':
print(num1,”+",num2,"=", add(numi,num2))
if choice == '2°:
print(numi,”-",num2,“=", subtract(numi,num2))
choice == *3°:
print(numi,"*" num2,"=", multiply(num1,num2))
choice == "4":
print(numi, .num2, “=", divide(num1,num2))

pr"mt(Invalid input™)

Python 3.4.2 Shel =%
Eile Edit Shell Debug Options Windows Help

Python 3.4.2 (default, Oct 19 2014, 13:31:11)

[GCC 4.9.1) on linux

Type "copyright”, "credits” or "license()" for more information.
>>> RESTART

>>>

Select operation.

1.Add
2.Subtract
3.Multiply
4.Divide

Enter choice (1/2/3/4):

Improved Calculations

The obvious contender for improvement here is using the
Create Your Own Modules route and extracting the function
definitions as a module. You can then call the module and focus
on the body of the code.

The other area of improvement is code itself. Where there's
just a single shot at making a calculation, you could encase it in
a while loop, so once a value is presented the user is sent back
to the main menu. Perhaps, improvement to the Invalid Input
section is worth looking into as well.

secsscesecesscscssscsesecsesssenssses

©00080000

www.bdmpublications.com 133

©00000000000000000000000000800000000000000060000000000000000000

esesccsscsssscssssscssesscsesssssssee

(O a3

b
£l
qg
%
§
D
yl|
[]
H
1
s
f
2]
i)
g
5)
3
n
1
<
2f
6
4
37
L]

0
4
y
]
x|
W
D
[]
L]
X
0
[«
il
9
Yy
m
B
al
L]
Cow
Y

EN ™
Y O[ORZ2ROIZES 99D —R|—B2.0@ =

£

= [

S ROZNA I -ROMI—T =

ﬁ/ﬂr—ﬂ\m
—HNE S

k'b R c Bee *4°
/ v fne O =
[] °~ e W4 -

]
4

Hangman Game Script

Hangman is a great game to program
into Python. It can be extremely
complex; displaying graphics, the
number of guesses left in the secret
word, a huge bankof available words
picked at random and countless
other‘eléments. It can also-be duite
simple. Here we‘have a mix between
the;tinvol

o Vi 2501

o
Eile Edt Format Run Qptions Windows Help

| random

board = [

; www.bdm%licationk.com

o

HANGMAN.PY

We've made a Hangman game board (the gallows) out of
characters that can be displayed in the IDLE Shell, along with
a huge bank of words to randomly choose from.

import random
board = [Y'/
>>>>>>>>>>Hangman<<<<<<<L<L<LL

+-——+
[
I
I
I
I

oy

class Hangman:
def _ _ init _ _ (self,word):
self.word = word
self.missed _ letters = []
self.guessed _ letters = []

def guess(self,letter):
if letter in self.word and letter not in self.
guessed _ letters:
self.guessed _ letters.append(letter)
elif letter not in self.word and letter not in
self.missed _ letters:
self.missed _ letters.append(letter)
else:
return False
return True

def hangman _ over(self):
return self.hangman _won() or (len(self.missed _
letters) == 6)

def hangman _ won(self):
if ' _’ not in self.hide _ word():
return True
return False

def hide _ word(self):
rtn =
for letter in self.word:
if letter not in self.guessed _ letters:
rtn += ' _ '
else:
rtn += letter
return rtn

def print game _ status(self):

print (board[len(self.missed _ letters)])

print (‘Word: ‘' + self.hide _ word())

print (‘Letters Missed: ‘',)

for letter in self.missed _ letters:
print (letter,)

print ()

print (‘Letters Guessed: ‘'))

for letter in self.guessed _ letters:
print (letter,)

print ()

def rand _ word():
bank = ‘ability about above absolute accessible
accommodation accounting beautiful bookstore
calculator clever engaged engineer enough
handsome refrigerator opposite socks interested
strawberry backgammon anniversary confused
dangerous entertainment exhausted impossible
overweight temperature vacation scissors
accommodation appointment decrease development
earthquake environment brand environment necessary

<Hangman Game Script é‘

luggage responsible ambassador circumstance
congratulate frequent’.split()
return bank[random.randint(0,len(bank))]

def main():
game = Hangman(rand _ word())
while not game.hangman _ over():
game.print _ game _ status()
user _ input = input(‘\nEnter a letter: ‘)
game.guess(user _ input)

game.print _ game _ status()
if game.hangman _ won():

print (“\nCongratulations! You have won!!’)
else:

print (“\nSorry, you have lost.’)

print (‘The word was ‘' + game.word)

print (“\nGoodbye!\n’)
if __name_ _ == "“_ _main_ _":
main()

©00

QUIT()

Since this is the last example in our Python code repository, we
thought we'd go out with a bang and feature the hangman
gallows being drawn with each incorrect guess of the word.
Don’t worry if it looks misaligned in the text here, this is merely
due to the differences between using the Python IDLE editor
and pasting the code into a word processor (which formats
things differently).

There's plenty you can do to improve, enhance and expand on
what we've presented here. You can include a routine that
returns an error if the user enters a number or character. You
can include extra points for someone who guesses the entire
word in one go rather than one letter at a time and you could
perhaps add Chopin’s Funeral March should you lose the game;
or something celebratory if you win.

|

¥
|

Consider replacing the bank of words too. They're found under
the bank list, and could easily be swapped out for something
more difficult. If you download www.github.com/dwyl/english-
words you can find a text document with over 466,000 words.
Perhaps you could swap the words in the bank to instead read
the contents of the text file:

def rand _ word():
with open(“/home/pi/Downloads/words.txt”, “rt”) as f:
bank=f.readlines()
return bank[random.randint(0,len(bank))]

©000000000000000000000000800
£ 0000000000000 000COCOCOCOICOIOSOIOOIOIEOESE

0008000000000 00R0RRTRTS

www.bdmpublications.com 135

(o

b
|
g
%

B O dH

(2RO ARS x9S 93 #E2 T

D) e

Understandln

o

www.bdmpublications.com

Understanding Linux @

Linux is a remarkably versatile and
powerful operating system. It's used
throughout the programming and
engineering world, in science, space
exploration, education, gaming and
everything else in between. It's the OS
of choice for high-performance servers,
it's the backbone of the Internet and it
powers the fastest supercomputers in
the world.

Knowing how to use Linux, and how it's
structured, is key to being able to create
better Python content. The Raspberry Pi,
for example, uses a Linux-based OS and,
as such, makes for an excellent coding
platform. Regardless of whether you're
using a Pi, like us, or a Linux Mint or
Ubuntu, these pages will prove invaluable
for your Python learning. Master Linux,
master Python, and start engineering
your coding future.

What is Linux?

Using the Filesystem

Listing and Moving Files

Creating and Deleting Files

Create and Remove Directories
Copying, Moving and Renaming Files
Useful System and Disk Commands
Using the Man Pages

Editing Text Files

Linux Tips and Tricks

A-Z of Linux Commands

Glossary of Python Terms

www.bdmpublications.com

E Understanding Linux>

Whatis Linux?

The Raspberry Pi operating system is Raspbian, which is a Linux operating system; but
what exactly is Linux? Where did it come from and what does it do? In a world where

Windows and macOS have supremacy of the desktop, it's easy to overlook it, but
there’s more to Linux than you might imagine.

Linux is a surprisingly powerful, fast, secure and capable operating system. It's used as the OS of choice for the Raspberry Pi, in
the form of Raspbian OS, as well as in some of the most unlikely places.

Despite only enjoying a 1.96% share (according to netmarketshare.
com) of the total desktop operating system market, Linux has a
dedicated following of enthusiasts, users and contributors. It was
created in 1991 by University of Helsinki student, Linus Torvalds,
who had become frustrated with the limitations and licensing of the
popular educational system Minix, a miniature version of the Unix
operating system, in use at the time.

Unix itself was released in the early ‘70s, as a multi-tasking, modular-
designed operating system originally developed for programmers
who needed a stable platform to code on. However, its performance,
power and portability meant that it soon became the system of
choice for companies and universities where high-end computing
tasks were needed.

-------- ©00000000000000000000000000000000000006000000000000000000

.
.

BOOTLOADER

The bootloader is the software that initialises and boots up

< your computer. It loads up the various modules the OS uses to
begin to access the hardware in the system. You can modifya !
bootloader to load more than one OS installed on the system.

secsssscce

..

DAEMONS

Daemons are background services that start as the operating
system is booting. These can enable printing, sound,

networking and so on. They run unobtrusively rather than
under the direct control of the user, often waiting to be 4
activated by an event or condition. 3

DESKTOP ENVIRONMENTAL :

The Desktop Environment, or DE, is the main Graphical User
Interface (GUI) that users interact with. It's the desktop, that :
includes Internet browsers, productivity, games and whatever

program or app you're using. There are countless DEs g
available. Raspbian uses PIXEL.

--

www.bdmpublications.com

Torvalds needed a system that could mirror Unix's performance and
features, without the licensing cost. Thus was born Linux, the
Unix-like operating system which used freely available code from
the GNU project. This enabled users around the world to utilise the
power of the Unix-like system, completely free of charge, an ethos
that still holds today: Linux is free to download, install and use.

Linux is much like any other operating system, such as Windows or
macOS in that it manages the computer hardware, provides an
interface for the user to access that hardware and comes with
programs for productivity, communications, gaming, science,
education and more. Linux can be broken up into a number of
significant elements:

................... 9000000000000 00000000000000000000000000000000
.
.

GRAPHICAL SERVER

This is a module within Linux that provides a graphical output
to your monitor. It's referred to as the X server or simply just
X. X is an application that manages one or more graphical

. displays and one or more input devices (keyboard, mouse, etc.)
connected to the computer.

eseccscscscscscscssesce

--

..

KERNEL

The kernel is the core of the system and the single element
that is actually called Linux. The Linux kernel manages the
computer processor, memory, storage and any peripherals you :
: have attached to your computer. It provides the basic services
for all other parts of the OS.

--

..

PROGRAMS/APPLICATIONS

< also makes use of the tens of thousands of freely available
. applications. The likes of LibreOffice, GIMP and Python are just

With Linux being an open source, free operating system, it
: the tip of the iceberg. 3

..

The Linux shell is a command-line interface environment that a
Linux user can use to enter commands to the OS that directly
affect it. Within the shell you can add new users, reboot the
system, create and delete files and folders, and much more. 4
BASH (Bourne Again Shell)
is the most popular shell
used in Linux, although
more are available. The
shellis also known as the
Terminal, and it's where
you're going to work

from through this section
of the book.

Tux, the
Linux
mascot
(Linus likes
penguins).

Raspbian on the Raspberry Pi, is the
Linux distribution of choice.

A Desktop Environment can
be as complex or as simple as
the user desires.

(What is Linux? a

Linus Torvalds, the creator of the
Linux kernel.

Linux is used throughout the world, in a number of basic and

quite unique uses. While it may look radically different from one

environment to the next, the actual Linux kernel, can be found

in modern smart TVs, in-car entertainment systems and GPS,

supercomputers, 10T devices and the Raspberry Pi. It's used by

NASA, both in the command centre and on-board the ISS. Linux

servers power the backbone of the Internet, along with most of the

websites you visit daily. Android utilises components of the Linux

kernel, as do set top boxes, games consoles and even your fridge,
freezer, oven and washing machine.

Linux isn't just a free to use operating system. It's stable,
powerful and fast, easily customised and requires very little
maintenance. However, it's more than just performance stats;
Linux means freedom from the walled garden approach of other
operating systems. It's a lively community of like-minded individuals
who want more from their computers without the shackles of price
or conformity. Linux means choice.

www.bdmpublications.com m

E Understanding Linux>

sing the Filesystem

To master Linux, it's important to understand how the filesystem works. What's more,

it's also important to become familiar with the Terminal, or shell. This command line
environment may appear daunting at first, but with practise, it soon becomes easy to use.

GETTING AROUND

To drop into the Terminal, click on the fourth icon from the left along the top of the Raspberry Pi desktop, the one with a right-

fFacing arrow and an underscore. This is the shell, or Terminal.

First, you're going to look at directories and the
directory path. A directory is the same thing as a
folder, however in Linux it's always called a directory. These are
placed inside each other using a “/" character. So when you see /
home/pi it means the pi directory is inside the home directory.
Enter: clear and press return to clean the screen. Now enter: pwd.
This stands for Print Working Directory and displays /home/pi.

File Edit Tabs Help

When you log in to your Raspberry Pi, you don’t
start at the base of the hard drive, known as the
‘root’ (also known as the topmost directory). Instead you begin
inside your user directory, which is named ‘pi’ by default and is

itself in a directory called ‘home’. Directories are indicated by the /'
symbol. So, “//home/pi” tells you that in the root is a directory called
home, and the next “'/"” says that inside “home” is a directory called
“pi”. That's where you start.

pi@raspberrypi pud
shome/pi

pi@raspberrypi

m www.bdmpublications.com

STEP 3 Enter: 1s to view the contents of the current

directory. You should see Desktop, Documents,
and Downloads and Scratch in Blue. You may also see other items
depending on how much you have used your Raspberry Pi. The
colour code is worth knowing: directories are blue while most files
are white. As you go on you'll see other colours: executable files
(programs) are bright green, archived files are red and so on. Blue
and white are the two you need to know to get started.

STEP 4 Now you're going to move from the pi directory into
the Documents directory. Enter: cd Documents.
Note the capital “D”. Linux is case sensitive, which means you have
to enter the exact name including correct capitalisation. The cd
command stands for change directory. Now enter: pwd again to
view the directory path. It will display /home/pi/ Documents. Enter:
1s to view the files inside the Documents directory.

up.py fizzbang.py me:

STEP 5 How do you get back up to the pi directory? By using
acommand “cd..”. In Linux two dots means the
directory above, also known as the parent directory. Incidentally, a

single dot “." is used for the same directory. You never use “cd.” to

switch to the same directory but it's worth knowing because some

commands need you to specify the current directory.

pi@raspberryp
home/pi/Docunent
i@raspberrypi

piBraspberrypi

home/pi

ABSOLUTE VS RELATIVE PATHS

Comateririen

STEP 6 The “ls” and “cd” commands can also be used with
more complex paths. Enter: 1s Documents/

Pictures to view the contents of a Pictures directory inside
your Documents directory. You can switch to this directory using
cd Documents/Pictures;usecd ../..tomove back uptwo
parent directories.

Is Documents/Picture

pi@raspberrypi cd Documents/Picture
piBraspberrypi pud
home/pi/Docunents/Picture
pi@raspberrypi cd
hone

piBraspberrypi

It is important to know the difference between the working directory, root directory and home. There are also two types of
path: Absolute and Relative. These are easier to understand than they sound. Let's take a look...

STEP 1 By default, commands like “ls” use the working
directory. This is the current directory that you're
looking at and is set to your home directory by default (/users/
pi). Using “pwd” (Print Working Directory) lets you know what the
working directory is, and using “cd” changes the working directory.

yi@raspberruypi pud
home/pi

pberrypi

STEP 2 The root directory is always '/". Entering:
lists the contents of root, and entering:
switches to the root directory. This is important because there is a
difference between “ls Documents/Pictures” and “ls /Documents/
Pictures”. The first command lists the contents of the Pictures
directory in Documents inside the working directory (which, if you
are in the home directory, will work).

STEP 3 The second command (“ls /Documents/Pictures”)
attempts to list the content of Picturesina

directory called Documents inside the root directory (because the
path started with ‘/’, which is root). There is typically no Documents
directory in root, so you will get a “No such file or directory”
error. Starting a path with ‘/* is known as an “absolute path”, while
starting without the /" is known as a “relative path” because it is
relative to your working directory.

Documents/Picture:

Picture No such

pi@raspberrypi 1

Document file or directory

STEP 4 There is also an absolute path shortcut to your
user directory, and that is the tilde “~" character.
Entering: always lists the contents of your home directory,
while “cd ~” moves straight to your home directory, no matter
what your working directory is. You can also use this shortcut

WEEEBNE(HGed1s ~/Documents/Picturesfiol«S»El

the contents of the Pictures.

File Edit Tabs Help

File Edit

Tabs Help

www.bdmpublications.com

E Understanding Linux>

Listing and Moving Files

Admittedly, using the desktop GUI to list and move Ffiles is much easier than using the

Terminal and keyboard. However, it's an important skill that you will appreciate as you
advance with the Raspberry Pi and Linux.

LOOKING AT FILES

Operating systems are built on files and folders, or directories if you prefer. While you're used to viewing your own files, most
operating systems keep other files out of sight. In Raspbian, you have access to every file in the system.

STEP 3 After the permission letters come a single number.
This is the number of files in the item. If it's a file

thenit'llbe 1, butif it's a directory it'll be at least 2. This is because
each directory contains two hidden files; one with a single dot (.)

and one with two dots (..). Directories containing files or other
directories will have a higher number.

We've already looked at “ls”, which lists the files in
the working directory, but you are more likely to
use a command like “Is -1". The bit after the command (the *lah’)
is known as the argument. This is an option that modifies the
behaviour of the command.

pi 0 May
i pi 4096 Apr 2
i pi » Apr 2
2 pi pi 4096 Apr
3 pi pi 4096 Apr
pi pi May
2 pi pi 4096 Jan
x 2 pi pi 4096 Apr 17 12:5

Next you'll see the word “pi” listed twice on each

STEP 2 The “{” argument lists files and directories in long
format. Each file and directory is now on a single
line, and before each file is a lot of text. First you'll see lots of letters

and dashes, like ‘drwxr-xr-x". Don't worry about these for now; they
are known as ‘permissions’ and we’'ll come to those later.

txt

)i pi 4096 Jan
i pi 4096 Apr 17

m www.bdmpublications.com

line. This refers to the user rather than the name of
your computer (your default username is “pi”). The first is the owner
of the file, and the second is the group. Typically these will both be
the same and you'll see either ‘pi’ or ‘root’. You can enter:1s -1 /
to view the files and directories in the root directory that belong to
the root account.

0 May 11 20:56 article txt
4096 Apr 2
)96 Apr
i 4096 Apr
4096 Apr
0 May 11
)i 4096 Jan
i 4096 Apr 17
1096 May 11 7
Is -1

t
t
t
t
coot
t
t
t
t
t

STEP 5 The next number relates to the size of the file, in
bytes. In Linux each text file is made up of letters

and each letter takes up a byte, so our names.txt file has 37 bytes
and 37 characters in the document. Files and directories can be
extremely large and hard to determine, so use “Is—h". The “h”
argument humanises the number, making it easier to read.

1096 Apr 21
1096 Apr 2
1096 Apx
4096 Apr
7 May 11
1096 Jan |
i 4096 Apr 17 12:53
4096 May 11 2
1 1h

0 May 11
pi 4.0K Apr 21
i 4.0k Apr 21
1.0K Apr 21

i 4.0K Apr 17

SOME COMMON DIRECTORIES

Listing and Moving Files

@

STEP 6 Finally, you should be aware that there are many
hidden files in Linux. These are listed using the “-a
argument. Hidden files and directories begin with a dot (.), so you
should never start a file or directory with a dot, unless you want to
hide it. Typically, you can combine all three arguments together into
the command s —lah”.

”

Now that you know how to view the contents of your hard drive you'll start to notice a lot of directories with names like bin, sbin,
var and dev. These are the files and directories that you are kept away from on a Mac, and won't encounter on a Windows PC.

$600000600 000000000000 s00s

STEP 1 Enter: to view all of the Files and

directories, including the hidden items, in the root
directory of your hard drive. Here you will see all the items that
make up your Raspbian OS (which is a version of Linux). It's worth
taking the time to know some of them.

160 May 11 09:03

t 4.0k Jan 1 1970
root 4.0K Jun 20 2017

$00000000000000000060000000080000000000000s000000000000s00000s0s00s

STEP 3 Entering: displays the contents of your

home directory, which contains pi; the directory
that you start in. So, entering: is the same as just “ls”
from the default home directory. This is where you are expected
to place most of the documents you create. Don’t confuse home
with “usr”; the /usr directory is where find you find program tools
and libraries.

STEP 2 Bin is a directory that stores binaries. This is the
Linux way of saying programs or applications.
Sbin is for system binaries, which are the programs that make
up your system. Dev contains references to your devices: hard
drive, keyboard, mouse and so on. Etc contains your system
configuration files.

rmount

Z bzi er
bzdiff bzl mZfbmap Y rep fuse

STEP 4 Libis a directory that contains libraries of code
that are referred to by other programs (different
programs share files in Lib). “Var” is short for various, which is
mostly files used by the system, but you may need to work with
items here. Finally there is a directory called “tmp”, which is for
temporary files; files placed here are on your system for the short
term and can be deleted from the system.

www.bdmpublications.com

E Understanding Linux>

Creating and Deleting Files

Being able to create and delete a file is an everyday computing skill. However, when

using the Linux Terminal, there's an element of care required, chiefly because any
deleted files aren’t placed in the system recycle bin.

CREATING FILES

Once you learn to recognise the Files and directories that make up Raspbian OS, it's time to discover how to make your own.
Knowing how to make, edit and delete files and directories is essential if you want to make your own projects.

STEP 1 We're going to create a file using a command called STEP 3 If you try to touch a file that doesn't exist, you
Touch. Touch is an interesting command that reaches create a blank file with that name. Try it now. Type
out to a file, or directory, and updates it (this changes the system time touch testfile andls -1 toview the files. You'll now have a

as if you'd just opened the file). You can see Touch in access using “ls new file in your home directory called “testfile”. Notice that the size
-1" and checking the time next to a directory (such as Scratch). of the file is 0, because it has nothing in it.

reypi Is -1 herrypi touch te
52 Is 1

x 2 pi pi 4096 Apr 21
druw xr-x 5 pi pi 4096 May 13 ? wxr 2 pi pi 4096 Apr 2 755
drux 2 pi pi 4096 May 13 WX =XI =X i pi 4096 May 13 10:57
druxr-xr-x 3 pi pi 4096 Apr 17 } MU ¢ i pi 4096 May 311 'l'l‘!
druxruxr-x 2 pi pi 4096 Jan 1 druxr- i pi 4096 Apr 17 18:48
druxr-xr-x 2 pi pi 4096 Apr 17 12:53 druxr g pi 4096 Jan 1970
pi@raspberrypi druxr (2 pi 4096 May 13 11:05

- pi 0 May 13 11:10 testfile

©000000000000000000000000000000000080000000000000000000000000000 ©000

STEP 2 Now enter: touch Scratchandls -1 againand STEP 4 A quick word about file names: remember that
notice that the time has changed. It now matches Linux is case sensitive, so if you now enter: touch
the current time. You might be wondering what this has to do with Testfile (with a capital T), it doesn't update ‘testfile’; instead, it
creating files or directories. Touch has a second, more popular, use, creates a second file called ‘Testfile’. Enter: 1s -1 to see both files.

which is to create files. This is confusing, so most people stick with using lowercase letters
atall times.

touch testfile
Is

4096 Apr 21 17:55
4096 May 13 10:57
4096 May 13 11:01
4096 Apr 17 18:48
4096 Jan 1 1970
4096 Apr 17 12:53
touch Scratch

12 =1

1096 Apr 21 1
96 May 13 1
096 May 13 1
i 4096 Apr 17 1
4096 Jan 1 I
4096 May 13 11:05
0 May 13 11:08 testfile
pberrypi touch Testfile
erryp i 1s -1

4096 Apr 21 17:55

4096 May 13 10:57

4096 May 13 11:01

4096 Apr 17 18:48

2 pi 4096 Jan 1 1970

. pi 4096 May 13 11:05
‘aspberrypi

x 2 pi pi 4096 Apr 2
4096 May

4096 May
96 Apr 17
4096 Jan 1 1970
i 4096 May 13 11:05
0 May 13 11:08 testfile
0 May 13 11:10 Testfile

m www.bdmpublications.com

sscscses ssesssee esesessccse escecscssssss

STEP 5 Another important thing to know is never to use a
space in your file names. If you try to enter: touch

test file,you create a document called “test” and another called
“file”. Technically there are ways to create files containing a space
but you should always use an underscore character (“_") instead of a
space, such as “touch test_file”.

touch test file
1 1

2 pi pi 4096 Apr 21 17:55
5 pi pi 4096 May 13 10:57
4096 May 13 11:01

0 May 13 11:15 file
3 pi pi 4096 Apr 17 18:48
2 pi pi 4096 Jan 1 1970
2 pi pi 4096 May 1
0 May 1
0 May 1
0 May 1

2 pi pi
pi pi

X 2 3 11:05
1 pi pi } 11:15 test

] 11:10 testfile

} 11:12 Testfile

1 pi pi

REMOVING FILES

Creating and Deleting Files

@

STEP 6 Here are some other files names to avoid:
#%&{N\<>*?/S!"":@+"|=. The full stop (.) is used to
create an extension to a file; usually used to indicate a file type,
such as textfile.txt or compressedfile.zip, and starting a file with
a full stop makes it invisible. Don't use full stop in place of a space
though; stick to underscores.

touch don’t.use{odd}symbols&in<filename or=you’ 11 confu

We've created some files that we don’t want, so how do we go about removing them? It turns out that deleting files in your
Raspberry Pi is really easy, which may be a problem, so be careful.

STEP 1 Enter: to view the files in your home directory.
If you've followed the steps before then you should
have three files: “test”, “testfile”, and “Testfile”. We're going to get rid
of these items because they were created as an example.

pi@raspberrypi | |
total 24

druxr-xr-x 2 pi pi 4096 Apr 21 17:55

druxr-xr-x 5 pi pi 4096 May 13 10:57

drux 2 pi pi 4096 May 13 11:01

ru-r——r 1 pi pi 0 May 13 11:15 file
drwxar—xr 3} pi pi 4096 Apr 17 18:48
druxrwxr-x Z pi pi 4096 Jan 1 1970
druxr-xr-x Z pi pi 4096 May 13 11:05

ru-r--x 1 pi pi 0 May 13 11:15 test
rU-r==x 1 pi pi 0 May 13 11:10 testfile
T e 1 pi pi 0 May 13 11:46 Testfile

pilx pberrypi

STEP 3 We're going to use a wildcard (*) to delete our next
two files, but again this is something you really
need to do with care. First use “Is” to list the files and make sure
it's the one you want to delete. Enter: to view files that
match the word “test” and any other characters. The “*” character
is called a "wildcard” and it means any characters here.

pi@raspberrypi 1s -1

total 24

druxr-xr-x 2 pi pi 4096 Jul ¢

druxr-xr-x 2 pi pi 4096 Jul ¢

druxr-xr-x 2 pi pi 4096 Jul ¢

ru-r——1 1 pi pi 0 Jul ° file
druxr—xr-x 2 pi pi 4096 Jul ¢

druxruxr-x 2 pi pi 4096 Jan 1 1970
druxr-xr-x 2 pi pi 4096 Jul 9 08:36
ru-r-—r— 1 pi pi 0 Jul 9 08:37 test
ru-r--r-- 1 pi pi 0 Jul 9 08:37 testfile
pi@raspberrypi 1s testx

test testfile

piBraspberryy b

STEP 2 To get rid of files you use the “rm” command.
Enter: to delete the Ffile called
“Testfile” (with the uppercase “t"). Enter: and you'll find it's
gone. Where is it? It's not in the Trash or Recycle Bin, like on a Mac
or Windows PC. It's deleted completely and cannot be recovered.
Bear this in mind and always think before deleting files.

STEP 4 We see that “Is test*” matches two files: “test” and
“testFfile”, but not the file called “file”. That's because
it didn’t match the “test” part of “test*”. Check carefully over groups
of files you want to remove (remember you can't recover them) and
replace the “Is” with “rm”. Enter: to remove both files.
Finally enter: to getrid of the confusing file.

pi@raspberrypi rm Testfile
piGraspberrypi 1 1

total 24

druxr-xr-x 2 pi pi 4096 Apr 21 17:55
druxr-xr-x 5 pi pi 4096 May 13 10:57

drux 2 pi pi 4096 May 13 11:01

6 e s 1 pi pi © May 13 11:15 file
druxr—xr 3 pi pi 4096 Apr 17 18:48
druxruxr—x 2 pi pi 4096 Jan 1 1970
druxr-xr-x 2 pi pi 4096 May 13 11:05
ry-pr-=-r 1 pi pi 0 May 13 11:15 test
ru-pr--r 1 pi pi 0 May 13 11:10 testfile
pi@raspberrypi _

pi@raspberrypi rm test
pilraspberrypi 1s -1

total 24

druwxr-xx 2 pi pi 4096 Jul) 08:3¢
druxr-xr 2 pi pi 4096 Jul) 08
druxr—xx 2 pi pi 4096 Jul 9 ¢
ru—-r—-—yx 1 pi pi 0O Jul 9
druxr-xr-x Z pi pi 4096 Jul)
druxruxr-x 2 pi pi 4096 Jan 1
druxr—xr 2 pi pi 4096 Jul 9 08:36
piE pt rypi rm file

pi pberryp

www.bdmpublications.com

E Understanding Linux>

Create and Remove

Directories

Creating, moving and deleting directories aren’t as easy in the Terminal as they are within a

desktop interface. You need to tell Linux to move the directories inside other directories, a
process known as recursion. Sounds complex but you should quickly get the hang of it.

MANAGING FILES AND DIRECTORIES

Now that you know how to create Files, you'll want to learn how to make directories, which are the same thing as folders, as
well as move items around. If you are more used to working with a desktop interface, this can take a bit of getting used to.

STEP 1 Enter: 1s to quickly view all the directories currently
in in the home location. Directories are created
using the “mkdir” command (make directory). Enter: mkdir

testdir to create anew directory in your home directory. Enter:
1s again to seeiit.

spberrypi nkdir testdir
spberryp i 1s

spberrypi

STEP 2 The “mkdir” command is different to touch, in that
it doesn’t update the timestamp if you use it with a
directory that already exists. Enter:mkdir testdir againand you'll
get the error “mkdir: cannot create directory ‘testdir: File exists”.

testdir’: File exists

m www.bdmpublications.com

STEP 3 Like touch, you can create multiple directories
at once with the mkdir command. Enter: mkdir
testdir2 testdir3 andenter: 1s.You'll now find several
directories called testdir. Also, like files, you should know this means
you can't (and really shouldn't) create directories with spaces. As

”

with files, use an underscore (“_") character instead of a space.

mkdir testdirZ testdir3

pil@raspberrypi 1s

pi@raspberrypi

pilraspberrypi

STEP 4 You can create directories inside of each other using
the directory path. Enter: mkdir Documents/
photos to create a new directory called “photos” inside your
documents directory. The directory has to already exist, though,

try to enter: mkdir articles/reports and you'll getan error
because there is no articles directory.

pi@raspberrypi Is

pi@raspberrypi mkdir Documents/photos
mkdir articles/reports

mkdir: cammot create directory “article

pi@raspberrypi
reports’ : No such f

pi@raspberrypi

©000

STEP 5 To create a directory path you need to pass in the
“p” option to mkdir (which stands for “parents”).
Options, if you remember, come after the command and start with
a'“.Soenter:mkdir -p articles/reports.Enter: 1s to view

the articles directory, or “Is articles” to view the reports directory
sitting inside.

pi@raspberrypi mkdir -p articles/reports

GETTING RID OF DIRECTORIES

Create and Remove Direct

©0060006000000000

STEP 6 Now you're starting to get a bit more advanced,
we're going to just reiterate something. In Linux
the command structure is always: command, option and argument,
in that order. The command is the function, next are the options
(typically single letters starting with “-") and finally the argument
(often a file, or directory structure). It's always command, option
then argument.

pi@raspberrypi] 1 articles
total 4
druxr-xr-x 2 pi pi 4096 May 13 12:36

pilraspberrypi

Deleting directories is pretty easy in Linux, along with files, and this can be a problem. It's too easy to delete entire directories
containing files and these are instantly removed, not sent to a trash directory. Tread carefully.

We're going to remove one of the directories we
created earlier using the “rmdir” command. Enter:
to view the files and directories in the current directory. We'll

start by getting rid of one of the test directories. Enter:
and i again to confirm the directory has been removed.

pi@raspberrypi 1s

pi@raspberrypi rmdir testdir3d_

STEP 3 To delete a directory containing files or other
directories, you return to the “rm” command used
to remove files, only now we need to use the “-R” option (which
stands for “recursive”.) Using “rm —-R” removes all the files and
directories to whatever you pointit at. Enter: to
remove the articles directory.

pi@raspberrypi 1s

pi@raspberrypi rm -R articles

piBraspberrypi 1

pi@raspberrypi

STEP 2 Now we'll try to get rid of the articles directory
(containing the reports directory). Enter:
and press return. You'll get an error saying “rmdir: failed
to remove ‘articles” Directory not empty”. This is a puzzler; the

rmdir command only removes directories that having nothing in
them (no files or other directories).

pi@raspberrypi rmndir articles
rndir: failed to remove ‘articles’: Directory not empty

p i@y pberrypi

STEP 4 As with multiple files, you can delete multiple
directories inside the same directory using the “rm”
command with the wildcard character (*). This should be done with
care though so use the Eiloption (which stands for “interactive”).
This will prompt you before each deletion. Enter:
and press fiand to each prompt. It’s a good idea to use the
option whenever using the rm command.

pi@raspberruypi rm —Ri testx=

rm: remove directory “testdir’? y
rm: remove directory “testdir2’'? y
rm: remove directory “testdir3’? y_

www.bdmpublications.com

E Understanding Linux>

Copying, Moving and
Renaming Files

Taking command of the Terminal is essential when learning how your Raspberry

Pi's operating system works. The copying, moving and renaming of files is equally
important, as you'll be doing a lot of this throughout your Pi projects.

USING THE MOVE COMMAND

In Linux, renaming a file is simply moving it from one name to another and copying a file is moving it without deleting the

original. Don’t panic, it's quite easy to master.
STEP 1 Before we can move anything around, we need to
have a few test items in our home directory. Enter:

touch testfileandmkdir testdir to create a test file and
test directory in your home directory. Enter: 1s to check that they
are both present.

touch testfile
pi i mkdir testdir
pi rup i s

pi pberrypi

pi@raspberrypi

STEP 2 Files and directories are moved using the mv
command. This is different to the commands we've
looked at so far because it has two arguments (remember Linux
command line is command, option, argument). The first argument
is the source (the file or directory to be moved) and the second is
the destination.

pi@raspberrypi Is

pi@raspberrypi nu testfile testdir

m www.bdmpublications.com

STEP 3 Enter:mv testfile testdir and pressreturn
to move the testfile document into the testdir
directory. Enter: 1s to see thatit's no longer in the home directory,
and 1s testdir to see the testfile now sitting in the testdir
directory. Now enter: mkdir newparent to create a new directory.

mu testfile testdir
ls

Is testdir

STEP 4 Directories with files are moved in the same way.
Enter:mv testdir newparent to move the
testdir directory inside the newparent directory. Let’s move into the
directory to find the file. Enter: cd /newparent/testdir and
enter: 1s to view the testfile sitting inside the directory.

mkdir newparent
mu testdir newparent
cd newparent/testdir
1s
testfile

pi@raspberr

STEP 5 Files and directories can be moved up using the
double dot (“..") as an argument. Enter: 1s -1a
to view your testfile and the single and double dot files. The
single dot is the current directory and the double dot is the parent

directory. Enter:mv testfile .. to move the testfile up into
the newparent directory. Enter: cd .. to move up to the parent

sscscscs esessses ssesescscse essscecscssss

pi@raspberrypi cd neuparent/testdir

pi@y pberrypi 15

testfile

piGr pberrypi nu testfile
pi@raspberrypi cd

RENAMING FILES AND DIRECTORIES

Copying, Moving and Renaming Files @

STEP 6 You can also move files using longer paths. Enter:
cd -~ toreturn to the home directory and
mv newparent/testfile newparent/testdir/testfile
to move the testfile from its current location back inside the testdir

directory. Enter: 1s newparent/testdir to view the file backin
its current directory.

esesssee scessses eesessccse sscecse

pi@raspberr
pi@raspbery
piBraspbery mu newparent/testfile newparent/testdir/
pi@raspberr 1s neuparent/testdix

testfile

pi@raspberri

The mv command isn’t used just to move files; it also serves the purpose of renaming files (effectively it moves it from its old

name to a new name). Let's see how to use mv to rename items.

STEP 1 Let’s start by making a new test file called “names”.
Enter: and then il to make
sure the testfile is present. We're going to turn this into a file that

contains the names of some people. So let's call it something more
appropriate, like “names”.

$00 0000000 0000000000

STEP 3 You can rename directories inside other directories
using paths. Let’s rename the testdir directory,
which'is now inside the people directory. Enter:
testdir names/friendsgNENELIEy

to move the names file inside the friends directory.

pi@raspberrypi 15

pi@raspberrypi nu testfile name
pilr pberrypi £
names

pifraspberrypi

pi@raspberrypi Is
name

pi@raspberrypi mu peoplestestdir peoplesfriend

STEP 2 Enter: and il Now we can

see the new “names” file in our directory. The mv
command can also be used to rename directories. We should still
have our newparent directory in our home directory. Enter:
to rename the newparent directory. Enter:
iElto view it.

STEP 4 It is easy to overwrite files using the mv
command, so if you have files with the same
name use the “-n” option, which stands for “no overwrite”.

Enter: to create a new file and
testfile people/friendsBEEIRYloR=IgdeI ML= ololdalu)lel i e]gH

enter: ilf and you'll find testfile still there.

pi@raspberrypi touch testfile

pi@raspberrypi Is

piBraspber

Jjpi mu neuparent people
pi@raspberrypi 1

pifPraspberrypi

pi@raspberrypi touch testfile
pi@raspberrypi muv -n testfile people/friends
pi@raspberrypi 1s

pi@raspberrypi 1
pi@raspberrypi Is people/friend

names testfile
pi@raspberrypi

www.bdmpublications.com

E Understanding Linux>

Useful System and
Disk Commands

Understanding these core Linux commands will enable you to not only master the

inner workings of your Raspberry Pi but also to transfer those skills to other Linux

distros, such as Ubuntu or Linux Mint.

LOTS OF LINUX

Linux is a huge and versatile command line language and there are hundreds of commands you can learn and use. Here are a

few that can help you get more from your Raspberry Pi.

STEP 1 The Raspberry Piis a great little computer, so
let's start by getting some information. Enter:
cat /proc/cpuinfo to view some details on your Raspberry Pi
processors. If you have a Raspberry Pi 3 you will see four processors,
along with the model name and other info.

w?1)

b fastnult ufp edsp neon ufpud va idivt ufpd32 lpae ed

tmult ufp edsp neon ufpu3 sa idivt ufpd32Z lpae evl

b fastmult ufp edsp neon ufpuld

$000

Remember that cat is
used to list the contents
of a text file, which is
what cpuinfo is. There
are other text files with
system info available.
Try “cat /proc/meminfo”

to get information ' aea
about your memory, 30
“cat /proc/partitions” for
information about your
SD card, and “cat /proc/
version” shows which
version of Raspberry Pi
you are using.

10384

m www.bdmpublications.com

STEP 3 Enter: uname to view the name of the operating
system’s kernel, this is the element that sits
between the interface and hardware. Just as you would suspect, the
response from the command is Linux, as Raspbian is a Linux distro,
which in itself is based on another Linux distro called Debian. While
it may sound complicated, it actually demonstrates how versatile
Linux is.

aspberrypi uname

herryp i

STEP 4 Enter: uname -a to view some more detailed
information. Here you'll see the kernel name,
hostname and kernel version (3.18.7-v7 on ours). If you have
a Raspberry Pi 2 you'll see SMP (symmetric multiprocessing),
followed by the system date, CPU architecture and operating
system (GNU/Linux).

pi@ras

Linu

pberrypi uname

pi@raspberrypi
raspberrypi
pberrypi

uname -a
31.18.7-u7+ #7755 SMP PREEMPT Thu Feb 12 1%

Linux
pifre

sscscses esesssee esesescece escecscssssss

Enter: vegencmd measure temp to view the
current operating system temperature of your

Raspberry Pi. Enter: vegencmd get mem armto view the RAM

available, and vegencmd get_mem gpu to view the memory
available to the graphics chip. Finally try ls usb to view a list of
attached USB devices.

encnd measure_temp
gencnd get_mem arm

gencnd get_men gpu

4 Standard Microsystems Corp
Linux Foundation 2.0 root hub
e jtandard Microsystems Corp
0449:1503 Holtek
1a40:0101 Terninu
ID 276d:1105

shortboard Lefty
1-Port HUB

Semiconductor, Inc
Technology Inc

DISK COMMANDS

Useful System and Disk Commands é‘

ssesccsse escsscssccce escecee

One command you might be wondering about is

how to switch off or restart your Raspberry Pi from
the command line. Don't just hit the power switch. Enter: sudo
showdown -h now to shut down the Raspberry Pi (the “-h” option
stands for “halt”), or enter: sudo shutdown -r now to restart
your Raspberry Pi.

udo shutdown -r now

Broadcast message from root@raspberrypi (ttyl) (Thu May 14 12:20:29 2015)

The system is going doun for reboot NOW?

Learn the two commands that enable you to view your disk space and the files on it: df (disk free space) and du (disk usage).
With these two commands you can view the file usage on your SD card.

STEP 1 Start by entering: 6Fd in the command line. It
returns a list of the volumes contained on your
SD card. You might be wondering what a volume is. It’s best to
think of your SD card as the drive. This contains partitions, which is
where you split one drive to act like two or more drives. And each
partition can contain volumes, which are storage spaces.

pi@raspberrypi af
Filesysten 1K-block Used Available Usex Mounted on
rootf)t 1184164 2740096 56

81636

dev/root 1184164 2740096 56

deutmpf 0 4 [0} dev
tmpf 60 1% /run
tmpfs 0 0 07 srun/lock
tmpf's 176860 0 176860 07 /runsshm
sdev/mmch 1kOpS 60479 14536 45943 . /boot

pi@raspberrypi

STEP 3 Now enter: B8 You should see lots of text fly
up the screen. This is the disk usage for the files
contained in your home directory and their sub-directories. As
with dF; it is better to use du with the “-h” option to humanise the
output. If you want to slow down the output, you'll also need to
pipe it through less. Enter: to view the files and
their respective usage one page at a time.

pi@raspberrypi df]
Filesysten Size Used Avail Use Mounted on
rootf 6.36 3.46 2.76 56

dev/root 6.3G 1.4G 2.7G 56

deutmnpf 126M 0 428M 0 deuv
tmpf 87M 260K 87M 1 run
tmpf 5.0M 0 5.0M 07 /run/lock
tmpfs 173M 0 173M (0} run/shm
sdevs/mmch 1kOpS 60M 15M 45M 257 /boo

pberrypi

©0008000006000000000000000000000000000 0000000 0000000000000t

STEP 2 Enter: to get the list in human readable form.

The first two lines should read “rootfs” and “/dev/
root” and have matching Size, Used, Avail and Use% listings. This

is the main drive, and is an indication of how much space you have
used, and have free, on your Raspbian OS. The other volumes are for
booting and initialising devices (you can ignore these for now).

STEP 4 You don’t typically enter: du on its own; most of
the time you want to view the disk usage of a

specific directory. Enter: to view how
much space the python_games directory (installed alongside
Raspbian) takes up. It should be 1.8M. If you want a more
comprehensive breakdown of the files contained, use the “-a”

option (all). Enter: to view all the files

pi@raspberrypi du -h | les contained and their disk usage.
221 ninecraft /games/con.mo jang/minecraftWorlds /world
2z2n ninecraft/games/con.mo jang/ninecraftiorld
22M minecraft/ganes/con.mo jang e :
22M ninecraft/game 1
1.0K pulse i rypi du -h python_gane
16K /.config/gedit 1.8M thon_gan
8.0K config,11bfm yifraspberry du ~ha python_game

A python_games/RedSelector . png
1.41 .7.configsepiphanysadblock puthon_games/4rouw_board . png
1.51 -configsepiphany python_games/Star . png
8.0K config/lxse ion/LXDE-pi python_ganes/4row_humanuimmer . png
12K config/lxsession python_ganes Wall_Block_Tall.png
8 0K config dcant python_games,princess . png
bty i ' python selector. png
8.0K config/rnche.org python rou_black.png
8.0K config/lxterminal python catanimation.py
8.0K z.configrsuk.ac.cam.cl python es/flippy.py
}.0K .config/IndieCity python_ganes/match3.uau
e 2 & 24} python_games/starpusher . py

www.bdmpublications.com

E Understanding Linux>

Using the Man Pages

Linux comes with man (manual) pages that explain each command and show you all the

options you can use. Once you get the hang of reading the man pages, you'll be able to
find and do just about anything in Linux.

HEY, MAN!

The man pages are one of the best features of Linux, and as a built-in tool it's invaluable for both beginner and senior level
Linux administrators. Let's see how it works.

escscsscscsces ©0cec0000000000000000000000000 0000000 cecece 0000000000000 00000000000000 00000000000 ssssceccee cecscece

STEP 1 Linux has a built-in manual, known as man for STEP 3 Most commands are pretty easy to figure out how
short. Using the man command you can obtain to use, so what you spend most of the time in the
information on all the Linux commands we've talked about. Simply man pages is looking under the Description. Here you will see all the
enter: man and the name of the command you want to learn more options and the letters used to activate them. Most man pages are
about. Start by entering: man 1s in the command line. longer than a single page, so press any key, such as the space bar, to

move to the next page of content.

pifraspberrypi

©00800000000000000000

STEP 2 The man pages are a bit more detailed than you
might be used to. First you have a name, which tells
you what the command is called; in this case “list directory contents”)
and then the synopsis shows you how it works. In this case: “ls © follou cach 1 Tine synbolic ik that paints to dircctory

[OPTION].. [FILE..]". So you enter: 1s followed by options (such as Rk uplicd entrics matching shell PATTERN
-1a) and the file or directory to list.

with style WORD to entry names: nome (default), slash (-p), file-type (-—file

HetE) not list implied entries matching shell PATTERN

SYNOPSIS
Is

©000

STEP 4 Press the H key while looking at a man page to view
the commands you can use to control the view.
. This is called the Summary of Less Commands (the less command
do not. List inplied . an is something we'll come to when we look at editing text). For now

bl realise that you can move back and forward with Z and W. Press Q to
quit this help screen and return to the man page.

DESCRIPTION
Li

SUMMARY OF LESS COMMANDS

with -1t

C list entries by

——color[=UHEN]
colorize the output. WHEN defaults to “always’ or can be “never’ or ‘auto

d, --directory
list directory entries instead of contents, and do not dereference symbolic 1ink

-D, —-dired
d for Emacs’ dired mode

disable -1s --color

uffered input

fault “wi
Default “ha i S e screen height
full-tine
ike -1 —tine-style

Manual page 1s(1) line 1 (press h for help or g to quit)]

m www.bdmpublications.com

STEP 5 Scroll to the bottom of the man page to discover
more information. Typically you will find the
author’s name and information on reporting bugs, including web

links that can be useful for more information. Press Q to exit the
man page and return to the command line.

cscscses esessses ssesescecse escscscscssss

sort alphabetically by entry extensior

context

help display this help a

versic

KB 1000, K 1024, MB 1000

color With ——coll

USING MAN OPTIONS

(usigthevanrse: (T

Using the Man Pages @

STEP 6 The man command can be used for just about every
command you use in Linux. You can even enter:
man man to get information on using the man tool. From now on,
whenever you come across a new command in this book, such as

“nano” or “chmod”, take time to enter:man nano orman chmod
and read the instructions.

essssses ssescces escsssccce escecee

nual
1 [-d1 [-D] [—warnings| 11 [-R 10-L 1 [-n
1 [-71 1-E 1 [——no-hyphenation] [--no-justification] [-p
1
] I=11=-11 [11 1
1
1 [-d] [-D] [--warnings[11 [-R
nan —ul-4 [-C 1 [-d1 [-D]
man ¢ [-C 1 [-d] [-D1

man [-hu]

DESCRIPTION

Because man doesn’t change anything, like mv or mkdir, it is tempting not to see it as a command. But it is, and like all other

commands it has options. These can be very handy to learn.

STEP 1 Entering: enables you to view some of
the options, but sometimes you'll just want a quick
overview. Fortunately man has a built-in help option that quickly

lists the options. Press Q if you're in a man page and enter:
at the command line.

000000080 008000000

STEP 3 One of the most powerful man options is the -k
option, which is for “apropos”. This enables you
to search a wider range of man pages than the exact command.
Enter: to view all of the man pages relating
to directories “(man -k directory | less” to view one page at a time).

Here you'll find commands like “Is”, “mkdir” and “cd” along with
their description.

STEP 2 If you're fast you may have noticed the start of the
text flew up off the page. This is because the “man
—h" option doesn't use the less command by default (less is what
enables you to move down text one screen at a time). We'll look

into pipes (“]") later on, but for now just use “man -h | less” to read
long text one page at a time.

G0 ssceesssseesssssessssceassssesesssetsssssetssesessssessssen e

STEP 4 Entering the man page for all the commands
you come across can be a little long-winded,
although ultimately productive. If you simply want to know what a
command does you can read just the description using the “whatis”
command. Enter: to read the description of the
“pwd” command (“print name of current/working directory”).

pi@raspberrypi man —h | le

pi@raspberrypi whatis pud
pud (1) print name of currentsworking directory

www.bdmpublications.com

ﬁ Understanding Linux>

Editing Text Files

A text File in Linux can be anything from a simple set of instructions on how to use an

app, to some complex Python, C++ or other programming language code. Text files can
be used for scripting, automated executable Files, as well as configuration files too.

THE JOY OF TEXT

To be able to edit or create a text File, you need a good text editor. Linux has many but here are some in action on the

Raspberry Pi.

STEP 1 The first text editor for the Raspberry Piis the
default desktop environment app: Leafpad. To
use, you can either double-click an existing text file or click the
Raspberry Pi menu icon (in the top left of the desktop) and from the
Accessories menu, choose Text Editor.

® & ‘ % @ [pv@mspbenypn] i‘jThemmmmanPoem
- T
@®- yming >
@ N File Edit Search Options Help
= It remenber
@ s The dark woods, masking sl
The grey clouds' leaden eve
> The dusky streams that flow

And the lone winds that whi

1 sou ico g Vista on vista marching, hi
= Slope beyond slope, each dz

A) our gaunt land lay. So wher
oy Help s A rugged peak and gazed, hi
= = Saw but the endless vista -
=] Preference: > B Slope beyond slope, each hc

DF
It was a gloomy land that s

Run. D sDC Copies
o = o

All winds and clouds and dr
With bare boughs rattling i
And the dark woodlands broc
Not even lightened by the r
which made squat shadows ou
Cimmeria, land of Darkness

It was so long ago and far
I have forgot the very name
The axe and flint-tipped sp
And hunts and wars are shac
only the stillness of that
The clouds that piled forev
The dimness of the everlast
Cimmeria, land of Darkness

oh, soul of mine, born out
To clouds and winds and ghc

Cimmeria, land of Darkness

STEP 2 From the Terminal there are even more options,
although using the correct command, you can
launch any of the desktop apps via the Terminal. One of the
simplest, and a classic text editor that's carried over from the Unix
days, is vi. In the Terminal, enter: vi.

STEP 3 Viis the original Unix command but in this case it
launches VIM, the new Linux version of Vi. Although
simple looking, Vi is considered, even by today’s standards, to be
one of the most widely used text editors, There's a lot you can do
with it, so check out the man pages for more Vi information.

STEP 4 Nano is another favourite, and simple, text editor
available for Linux. Enter: nano into the Terminal
to launch it. You can use Nano for editing code, creating scripts or
writing your own help files. To exit Nano, press Ctrl + X, followed by
Y to save the file or N to exit without saving.

pi@raspberypi: ~

File Edit Tabs Help

m www.bdmpublications.com

File Edit Tabs Help
GNU nano 2.2.6

New Buffer

STEP 5 Emacs, or GNU Emacs, is an extensible and
customisable, self-documenting, real-time display
editor. It's a fantastic text editor and one that’s worth getting used
to as soon as you can. Sadly, it's not installed on the Pi by default,
soyou'll need toinstall it. In the Terminal, enter: sudo apt-get
install emacs

Tabs Help

File Edit

STEP 6 The previous command contacts the Debian
(Raspbian is based on a Debian Linux distribution)
repositories and pulls down the information needed to install
Emacs. When the Pi asks to continue with the installation, press V.
This installs the latest version and when it's done, you'll be back to
the command prompt.

emacs@raspberrypi - ox
File Edit Options Buffers Tools Help

ponent of the GNU/Linux operating system

Learn basic keystroke commands

Overview of Emacs features at gnu.org

View the Emacs manual using Info

GNU Emacs comes with ABSOLUTELY NQ WARRANTY |
Conditions for redistributing and changing Emacs ‘

STEP 7 Once the installation is complete, enter: emacs
into the Terminal. The Emacs splash screen opens
in a new window, offering a tutorial (which we recommend you run
through) and a guided tour amongst other information.

emacs@raspberrypi — -
File Edit Options Buffers Tools Text Help
I - X
I remember

The dark woods, masking slopes of sombre hills;
The grey clouds' leaden everlasting arch;

The dusky streams that flowed without a sound,
And the lone winds that whispered down the passes.

Vista on vista marching, hills on hills,

Slope beyond slope, each dark with sullen trees, |
Our gaunt land lay. So when a man climbed up

A rugged peak and gazed, his shaded eye

Saw but the endless vista - hill on hill,

Slope beyond slope, each hooded like its brothers.

It was a gloomy land that seemed to hold

All winds and clouds and dreams that shun the sun,
With bare boughs rattling in the lonesome winds,
And the dark woodlands brooding over all,

Not even lightened by the rare dim sun

Which made squat shadows out of men; they called it
Cimmeria, land of Darkness and deep Night.

Editing Text Files

STEP 8 Emacs can offer an uncomplicated view of your text
file or one with a plethora of information regarding
the structure of the file in question; it's up to you to work out your
own preference. There’s also a hidden text adventure in Emacs,
which we cover later in this book, why not see if you can find it
without our help.

Tabs Help

STEP 9 Gedit is another excellent text editor for Linux.
Again, it's not installed by default on the Raspberry

Pi; however, by entering: sudo apt-get install gedit and
accepting the installation, the program can be on the Piin a matter
of seconds. Once it's installed, use gedit in the Terminal to launch
it. Gedit is a great text editor for coding.

Open v || @ Circle.py ;
'r‘wpv} rt turtle
for tin range(4)

print("Making a square..")

turtle forward(100)

turtle left(90)

turtle.getscreen()._root. mainloop()
STEP 10 Finally, Jed is an Emacs-like, cross-platform text
editor that's lightweight and comes with a wealth

of features. To install it, enter: sudo apt-get install jed.
Accept the installation and when it's complete, use: jed to launch.

File Edit Tabs Help
1 File Edi : Buff

This is a scratch buffer. It is NOT saved when you exit.

To access the menus.
keys to navigate.

press F10 or ESC-m and the use the arrow

Latest version information is available on the web from
<http://ww.jedsoft.org/jed/>. Other sources of JED

information include the usenet newsgroups comp.editors and

To subscribe to the jed-users mailing list, see

alt.lang.s-lang.
<http://ww. jedsoft.org/jed/mailinglists.html>.

Copyright (C) 1994, 2000-2009 John E. Davis
Email comments or suggestions to <jed@jedsoft.org>.

www.bdmpublications.com m

E Understanding Linux>

Linux Tips and Tricks

The Linux Terminal, you'll no doubt agree, is an exceptional environment and with a

few extra apps installed along with a smidgen of command knowledge, incredible and
often quite strange things can be accomplished.

TAKING COMMAND

There are countless Linux tips, secrets, hacks and tricks out there. Some are very old, originating from Linux’s Unix heritage,
while others are recent additions to Linux lore. Here are our ten favourite tips and tricks.

$0060000000 ©600

NG elecy) Emacs text editor, is a great piece of a2 IV NN =100\ VIS [N[l Ever fancied being able to
software but did you know it also contains browse the Internet from

a hidden Easter Egg? With Emacs installed (sudo apt-get install the Terminal? While not particularly useful, it is a fascinating thing to
emacs24), drop to a Terminal session and enter: behold. To do so, enter:

emacs -batch -1 dunnet sudo apt-get install elinks

Dunnet is a text adventure written by Ron Schnell in 1982, and Then:

hidden in Emacs since 1994. ,
elinks

L i
e the Ebsie VouNEHD Vi

File Edit Tabs Help
pi@raspberrypi: ~

JouTube Mews Gmail Drive More »
Web His
Google

Advanced
[Google Search] [I'm Feeling Lucky]

Celebrate Pride Month Fam
Advertising ProgrammesBusiness Solutions+GoogleAbout GoogleGoogle.com

Privacy - Terms

MOON BUGGY Based on the classic 1982 arcade game, LET IT SNOW Snowing in the Terminal console isn’t
Moon Patrol, Moon Buggy appeared something you come across every day. If
on home computers in 1985 amid much praise. It's a cracking Atari you're interested, however, enter:

game available in the Linux Terminal by entering:
wget

d t-get install -b
sl apbrget dnsta MOCHZOUdIY https://gist.githubusercontent.com/sontek/1505483/

Then: raw/7d024716ea57e69fb52632fee09£f42753361c4a2/

snowjob.sh
moon-buggy

. chmod +x snowjob.sh
Enjoy.

./snowjob.sh
pi@raspberypi ~

u
<3N 3

m www.bdmpublications.com

MEMORY HOGS Memory Hogs - If you need to see
which apps are consuming the most
memory on your Raspberry Pi, simple enter:

ps aux | sort -rnk 4

This sorts the output by system memory use.

pi@raspberypi: ~ -ax

SHREDDER When you delete a file, there's still a chance of
someone with the right software being able to
retrieve it. However, files can be securely and permanently deleted
using Shred:

shred
Replace NAMEOFFILE with the name of the file to delete.

-zvu NAMEOFFILE.txt

el |V \:3) AsCllartcan be quite striking when applied to
some images. However, it's often difficult to

get just right. You can create some great ASClI art from the images
you already have on the Raspberry Pi by using img2txt:

img2txt NAMEOFIMAGEFILE.png

Replace NAMEOFIMAGEFILE with the actual name of the image file
on your system.

<Linux Tips and Tricks m

BBS Back in the days of dial-up connections, the online world
was made up of Bulletin Board Systems. These remote
servers provided hangouts for users to chat, swap code, play games
and more. Using Telnet in Linux, you can still connect to some active
BBSes:

telnet battlestarbbs.dyndns.org

There are countless operational BBSes available; check out
www.telnetbbsguide.com/bbs/list/detail/ for more.

pi@raspberypi: ~/Downloads

Over 450 Doors to play
} 8 0

19 Inter-BBS League Networks

o
New user
Guest account
Email the sysop
Disconnect
SYSOP MaRK
!

DIRECTORY TREES

single command, you can use:

If you want to create an entire
directory (or folder) tree with a

mkdir -p New-Dir/
{subfolderl, subfolder2, subfolder3, subfolder4}
This creates a New-Dir with four sub folders within.

——

pi@raspberrypi: ~/New-Dir

] abs Help

It's not easy trying

FORGOTTEN COMMANDS
to remember all the

available Linux commands. Thankfully, you can use apropos to help.
Simply use it with a description of the command:

apropos “copy files”
apropos “rename files”

www.bdmpublications.com _

E Understanding Linux>

A-Z of Linux Commands

There are literally thousands of Linux commands, so while this is not a complete A-Z, it
does contain many of the commands you will most likely need. You will probably find

that you end up using a smaller set of commands over and over again but having an
overall knowledge is still very useful.

A

G

,f_c.l_duser ,,,,,,, pidda pewrusen dd Data Dump, convert and gawk Find and Replace text
Print machine architect copy a file within file(s)
Find and replace text GLEE Display the differences grep Search file(s) for lines that
within file(s) between two files match a given pattern
dirname Convert a full path name groups Print group names a user
B tojust a path isin
m— An artilErary predElsn du Estimate file space usage gzip Compress or decompress
calculator language mamed filels)
C echo Display message on screen)
cat Concatenate filesand print e : ; e isdd Out.put KO Fisk: o
onheskandard pubpUE ed A llqe oriented text editor of file(s)
chdir Changewerkingdinsctory el hostname Print or set system name
,,,,,,,,,,,,,,,, egrep Search file(s) for lines
chgrp Change the group that match an
ownership of files extended expression I
chroot Change root directory env Ij:}s\ﬁig}ll{nsjztnct)rvgerir;\;\;es w3 PSS S oL id5
cksum Print CRC checksum and G Heloinfo
byte counts expand Convert tabs to spaces ..p
oS S S N O EE——) Copy Files and
cmp Compare two files expr Evaluate expressions SEERHBIESS
comm Compare two sorted files
line by line F J
== CORY e ”.‘O“" hilgs ko factor Print prime factors — .
another location join Join lines on a
T Schedule a comm.a;.r.{&“t.ch)m fdisk Partition table common field
run at a later time manipulator for Linux
csplit Split a file into context- fgrep el Fll?(s) tor !mes Lt K
daPerined depes match a fixed string
i b R O find Search for files that meet R SLops precess
cut Divide a file into ; o from running
severalpatte adesired criteria .
fmt Reformat paragraph text
D fold Wrap text to fita L
specified width less Display output one screen
date géstzlz(y t?r;zhange HiE format Format disks or tapes HEatime
. ; b 1n Make links between files
T DeElecala | b fsck Filesystem consistency .
... check and repair locate Find files
158 www.bdmpublications.com

logname

CA—Z of Linux Commands m

Remove files

Print current login name rm

lpc e printer
control program
lpr Off line print rsync Remote file copy
o N (synchronise file trees)
print queue
M é:reen Terminal window manager
WM ScoHelpmanval ... B saiff | Merge two iles nteractively
IR Createnew foldert) .. select Acceptkeyboardinput
—— Make FIFOs (named pipes) Seq ¥ rlntnumerlcsequences
mknod Make block or character

special files

sleep Delay for a specified time
iSplay OUEPUE ONE SCTEEN oo e
at atime sort Sort text files
“Mountafilesystem split Split a file into
.. ﬁxed_size p]eces
SSH Connects to a remote host
computer as a specified
e o
command or job e
Numberhnesand """""""" su Substitute user identity
write files sudo Execute a command as

another user, primarily as
the Root level,
administrator user.

Run a command immune
to hangups

afile

Synchronise data on disk
with memor

Convert text files
for printing

Printer capability database ~ tac Concatenate and write
.. files in reverse
Brintenvironmenkvaniables sussssissmsa i am s s s o
.. tail Output the last part
Format and print data of files

tee Redirect output to
multiple files
Bieplagdiusage i T
and limits conditional expression
" Scanafilesystemfor time Measure Program

disk usage Resource Use

Set disk quotas .
.. i Aot
the system
“traceroute Trace Routeto Host
Barn dicledics ‘HEEMww”m"wmf['é‘r'{éil'éféi,"s'a(jégi‘é'é'ria"ar"
Copy o Celetecharacters
two machines tsort Topological sort

U

umount Unmount a device
unexpand Convertspacestotabs
e 1q 7 n|q mfyﬁles
‘units Convertunits fromone
scale to another
unshar | Unpack shell archive scripts
‘useradd Create new useraccount
usermod | Modify user account
users | List users currently

loggedin

Verbosely list directory
contents (‘ls-1-b")

watch Execute or display a
program periodically
B 5 rlntbyteword e
line counts
“whereis | Reportallknown
instances of a command
e 7 ocateaprogramﬁlem
the user’s path
e T O et
currently logged in
whoami | Print the current userid
and name
xargs Execute utility, passing
constructed argument list(s)
yes Print a string

untilinterrupted

www.bdmpublications.com

E Glossary of Python Terms>

Glossary of Python Terms

Just like most technology, Python contains many confusing words and acronyms. Here

then, for your own sanity, is a handy glossary to help you keep on top of what's being
said when the conversation turns to Python programming.

Argument

The detailed extra information used by Python to perform more
detailed commands. Can also be used in the command prompt to
specify a certain runtime event.

Block

Used to describe a section or sections of code that are
grouped together.

Break

A command that can be used to exit a for or while loop. For example,
if a key is pressed to quit the program, Break will exit the loop.

Class
A class provides a means of bundling data and functionality together.
They are used to encapsulate variables and functions into a single entity.

Comments

A comment is a section of real world wording inserted by the
programmer to help document what's going on in the code. They
can be single line or multi-line and are defined by a # or .

Debian

A Linux-based distro or distribution that forms the Debian Project.
This environment offers the user a friendly and stable GUI to
interact with along with Terminal commands and other forms of
system level administration.

Def

Used to define a function or method in Python.

Dictionaries
Adictionary in Python is a data structure that consists of key and
value pairs.

Distro
Also Distribution, an operating system that uses the Linux Kernel as its
core but offers something different in its presentation to the end user.

Editor
An individual program, or a part of the graphical version of Python,
that enables the user to enter code ready for execution.

Exceptions

Used as a means of breaking from the normal flow of a code block in
order to handle any potential errors or exceptional conditions within
the program.

160

www.bdmpublications.com

Expression
Essentially, Python code that produces a value of something.

Float

An immutable floating point number used in Python.

Function
Used in Python to define a sequence of statements that can be
called or referenced at any time by the programmer.

GitHub

A web-based version control and collaboration portal designed for
software developers to better manage source code.

Global Variable

Avariable that is useable anywhere in the program.

Graphics

The use of visual interaction with a program, game or operating
system. Designed to make it easier for the user to manage the
program in question.

GUI

Graphical User Interface. The interface which most modern
operating systems use to enable the user to interact with the
core programming of the system. A friendly, easy to use graphical
desktop environment.

High-Level Language

A programming language that's designed to be easy for people to read.

IDLE

Stands for Integrated Development Environment or Integrated
Development and Learning Environment.

Immutable
Something that cannot be changed after it is created.

Import
Used in Python to include modules together with all the
accompanying code, functions and variables they contain.

Indentation

Python uses indentation to delimit blocks of code. The indents are
four spaces apart, and are often created automatically after a colon
is used in the code.

Integer
A number data type that must be a whole number and not
a decimal.

Interactive Shell
The Python Shell, which is displayed whenever you launch the
graphical version of Python.

Kernel

The core of an operating system, which handles data processing,
memory allocation, input and output, and processes information
between the hardware and programs.

Linux
An open source operating system that's modelled on UNIX.
Developed in 1991 by Finnish student Linus Torvalds.

Lists
A Python data type that contains collections of values, which can be
of any type and can readily be modified.

Local Variable
Avariable that's defined inside a function and is only useable inside
that Function.

Loop
A piece of code that repeats itself until a certain condition is met.
Loops can encase the entire code or just sections of it.

Module
A Python file that contains various functions that can be used within
another program to further extend the effectiveness of the code.

Operating System

Also OS. The program that's loaded into the computer after the
initial boot sequence has completed. The OS manages all the other
programs, graphical user interface (GUI), input and output and
physical hardware interactions with the user.

Output

Data that is sent from the program to a screen, printer or other
external peripheral.

PIP

Pip Installs Packages. A package management system used to install
and manage modules and other software written in Python.

Print

A function used to display the output of something to the screen.

Prompt

The element of Python, or the Command Line, where the user
enters their commands. In Python it's represented as >>> in the
interactive shell.

Pygame

A Python module that's designed for writing games. It includes
graphics and sound libraries and was first developed in
October 2000.

<Glossary of Python Terms m

Python
An awesome programming language that’s easy to learn and use,
whilst still being powerful enough to enjoy.

Random
A Python module that implements a pseudo-random character
generator using the Mersenne Twister PRNG.

Range
A function that used to return a list of integers, defined by the
arguments passed through it.

Root

The bottom level user account used by the system itself. Root is the
overall system administrator and can go anywhere, and do anything,
on the system.

Sets

Sets are a collection of unordered but unique data types.

Strings

Strings can store characters that can be modified. The contents of
astring are alphanumerical and can be enclosed by either single or
double quote marks.

Terminal

Also Console or Shell. The command line interface to the operating
system, namely Linux, but also available in macOS. From there you
can execute code and navigate the filesystem.

Tkinter

A Python module designed to interact with the graphical
environment, specifically the tk-GUI (Tool Kit Graphical User
Interface).

Try
A try block allows exceptions to be raised, so any errors can be
caught and handled according to the programmer’s instructions.

Tuples
An immutable Python data type that contains an ordered set of
either letters or numbers.

UNIX

A multitasking, multiuser operating system designed in the ‘70s at
the Bell Labs Research Centre. Written in C and assembly language

Variables
A data item that has been assigned a storage location in the
computer's memory.

X

Also X11 or X-windows. The graphical desktop used in Linux-based
systems, combining visual enhancements and tools to manage the
core operating system.

Zen of Python
When you enter: import this into the IDLE, the Zen of Python
is displayed.

www.bdmpublications.com _

Are you interested in Coding?

Then don’t miss our latest essential

Coding user guide on Readly now!

December 2021 Update

< . <
g A
Advanced
Tutoriale \ |
& Guidec | i

over §52)secrets & Hacks

o
&
2 Z3
g o 1 -

o

s Black Dog Media

FROM BEGINNER

Master Your Tech T0 EXPERT

To continue learning more about Your Tech visit us at:

www.bdmpublications.com
FREE Tech Guides

Apple iP_hone, iPad,
Mac, MacBook & Waic

EXCLUSIVE OFFERS
on Tech Guidebooks

® Print & Digital Editions

® Featuring the Latest Updates
® Step-by-step Tutorials & Guides

® Created by BDM Experts

PLUS SPECIAL DEALS and Bonus Content

Black Dog i-Tech Series

12th Edition | ISSN: 2044-4060

Published by: Black Dog Media Limited

Visit us at: www.bdmpublications.com

Managing Editor: James Gale

Production Director: Mark Ayshford

Editor: David Hayward

Production Manager: Karl Linstead

Design: Robin Drew, Lena Whitaker

Editorial: David Hayward

Digital distribution by: Readly, Pocketmags & Zinio

2022 © Copyright Black Dog Media Limited. All rights reserved. Notice: Before
purchasing this publication please read and ensure that you fully understand
the following guidelines, if you are in any doubt please don't buy. No part of
this publication may be reproduced in any form, stored in a retrieval system or
integrated into any other publication, database or commercial programs
without the express written permission of the publisher. Under no
circumstances should this publication and its contents be resold, lent, loaned
out or used in any form by way of trade without the publisher's written
permission. While we pride ourselves on the quality of the information we
provide, Black Dog Media Limited reserves the right not to be held responsible
for any mistakes or inaccuracies found within the text of this publication. Due
to the nature of the software industry, the publisher cannot guarantee that all
software and/or tutorials, tips, guides will work on every version of the

L &2 o
Photography;-PhotoShap,
Lightroom-& Elements

77 The Complete N
berryPi
RaGSleeB& .

ek and st e psar o 508

T -
Windows 11
The Essentials

Yo essental i to Mcrosots pew
Vw11 cperating systom

required hardware. It remains the purchaser’s sole responsibility to determine
the suitability of this book and its content for whatever purpose. Any images
reproduced on the front and back cover are solely for design purposes and are
not representative of content. We advise all potential buyers to check listing
prior to purchase for confirmation of actual content. All editorial opinion herein
is that of the writer as an individual and is not representative of the publisher
or any of its affiliates. Therefore the publisher holds no responsibility in regard
to editorial opinion and content. Black Dog Media Limited reserves the right not
to be held responsible for any mistakes or inaccuracies found within the text
of this publication. The publisher, editor and their respective employees or
affiliates will not accept responsibility for loss, damage, injury occasioned to
any persons acting or refraining from action as a result of the content with
this publication whether or not any such action is due to any error, negligent
omission or act on the part of the publisher, editor and their respective
employees or affiliates. Our articles are intended as a guide only. We are not
advising you to change your device, and would actually advise against it if you
have even the slightest doubts. There are potential risks to the hardware/
software involved, and you must be aware of these before you decide to alter
anything on your device. Read all of the information here carefully and then
make up your own mind whether you want to follow our guides. We take no
responsibility for damage to your camera or any other device used in the
process. If you are unsure, please do not buy this publication.

This Black Dog Media Limited publication is fully independent and as such does
not necessarily reflect the views or opinions of the manufacturers or hardware
and software, applications or products contained within. This publication is not

Ultimate Photoshop

bdmpublications.com/ultimate-photoshop
Buy our Photoshop guides and download tutorial
images for free! Simply sign up and get creative.

Coding Python,“
Raspberry Pi & Linux

BDM's L.

When you sign up to our
monthly newsletter!

endorsed or associated in any way with The Linux Foundation, The Raspberry
Pi Foundation, ARM Holding, Canonical Ltd, Python, Debian Project, Linux
Mint, Microsoft, Lenovo, Dell, Hewlett-Packard, Apple and Samsung or any
associate or affiliate company. All copyrights, trademarks and registered
trademarks for the respective companies are acknowledged. Relevant graphic
imagery reproduced with courtesy of Lenovo, Hewlett- Packard, Dell,
Microsoft, Samsung, Linux Mint, NASA, and Apple.

All copyrights, trademarks and registered trademarks for the respective
manufacturers, software and hardware companies are acknowledged.

All editorial content and design are copyright © Papercut Limited and
reproduced under license to Black Dog Media Limited.

Additional images contained within this publication are reproduced under
license from shutterstock.com.

All information was correct at time of print. Some content may have been
previously published in other volumes or titles. We advise potential buyers to
check the suitability of contents prior to purchase.

Black Dog Media Limited
Registered in England & Wales No: 05311511

ADVERTISING: Please contact: james@bdmpublications.com
INTERNATIONAL LICENSING: Black Dog Media Limited has many great
publications and all are available for licensing worldwide.

For more information go to: www.bdmpublications.com

or email James Gale: james@bdmpublications.com

